Ocean Science Journal

, Volume 52, Issue 2, pp 243–256 | Cite as

Estimation of net ecosystem metabolism of seagrass meadows in the coastal waters of the East Sea and Black Sea using the noninvasive eddy covariance technique

  • Jae Seong LeeEmail author
  • Dong-Jin Kang
  • Elitsa Hineva
  • Violeta Slabakova
  • Valentina Todorova
  • Jiyoung Park
  • Jin-Hyung Cho


We measured the community-scale metabolism of seagrass meadows in Bulgaria (Byala [BY]) and Korea (Hoopo Bay [HP]) to understand their ecosystem function in coastal waters. A noninvasive in situ eddy covariance technique was applied to estimate net O2 flux in the seagrass meadows. From the high-quality and high-resolution time series O2 data acquired over > 24 h, the O2 flux driven by turbulence was extracted at 15-min intervals. The spectrum analysis of vertical flow velocity and O2 concentration clearly showed well-developed turbulence characteristics in the inertial subrange region. The hourly averaged net O2 fluxes per day ranged from -474 to 326 mmol O2 m-2 d-1 (-19 ± 41 mmol O2 m-2 d-1) at BY and from -74 to 482 mmol O2 m-2 d-1 (31 ± 17 mmol O2 m-2 d-1) at HP. The net O2 production rapidly responded to photosynthetically available radiation (PAR) and showed a good relationship between production and irradiance (P-I curve). The hysteresis pattern of P-I relationships during daytime also suggested increasing heterotrophic respiration in the afternoon. With the flow velocity between 3.30 and 6.70 cm s-1, the community metabolism during daytime and nighttime was significantly increased by 20 times and 5 times, respectively. The local hydrodynamic characteristics may be vital to determining the efficiency of community photosynthesis. The net ecosystem metabolism at BY was estimated to be -17 mmol O2 m-2 d-1, which was assessed as heterotrophy. However, that at HP was 36 mmol O2 m-2 d-1, which suggested an autotrophic state.


eddy covariance noninvasive measurement oxygen flux carbon cycle eelgrass meadow net ecosystem metabolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Attard KM, Glud RN, McGinnis DF, Rysgaard S (2014) Seasonal rates of benthic primary production in a Greenland fjord measured by aquatic eddy correlation. Limnol Oceanogr 59:1555–1569CrossRefGoogle Scholar
  2. Berg P, Røy H, Janssen F, Meyer V, Jørgensen B, Huettel M, de Beer D (2003) Oxygen uptake by aquatic sediment measured with a novel non-invasive eddy-correlation technique. Mar Ecol-Prog Ser 261:75–83CrossRefGoogle Scholar
  3. Berg P, Røy H, Wiberg PL (2007) Eddy correlation flux measurements: the sediment surface area that contributes to the flux. Limnol Oceanogr 52:1672–1684CrossRefGoogle Scholar
  4. Berg P, Huettel M (2008) Monitoring the seafloor using the noninvasive eddy correlation technique: integrated benthic exchange dynamics. Oceanography 21:164–147CrossRefGoogle Scholar
  5. Berg P, Koopmans DJ, Huettel M, Li H, Mori K, Wüest A (2016) A new robust oxygen-temperature sensor for aquatic eddy covariance measurements. Limnol Oceanogr-Meth 14:151–167CrossRefGoogle Scholar
  6. Caffrey JM (2004) Factors controlling net ecosystem metabolism in US estuaries. Estuaries 27:90–101CrossRefGoogle Scholar
  7. Cathalot C, Van Oevelen D, Cox T, Kutti T, Lavaleye M, Duineveld G, Meysman FJ (2015) Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Front Mar Sci 2:37CrossRefGoogle Scholar
  8. Chipman L, Huettel M, Berg P, Meyer V, Klimant I, Glud R, Wenzhoefer F (2012) Oxygen optodes as fast sensors for eddy correlation measurements in aquatic systems. Limnol Oceanogr- Meth 10:304–316CrossRefGoogle Scholar
  9. Chipman L, Berg P, Huettel M (2016) Benthic oxygen fluxes measured by eddy covariance in permeable Gulf of Mexico shallow-water sands. Aquat Geochem 22:529–554CrossRefGoogle Scholar
  10. Clavier J, Chauvaud L, Amice E, Lazure P, van der Geest M, Labrosse P, Diagne A, Carlier A, Chauvaud S (2014) Benthic metabolism in shallow coastal ecosystems of the Banc d’Arguin, Mauritania. Mar Ecol-Prog Ser 501:11–23CrossRefGoogle Scholar
  11. Duarte CM, Matínes R, Barrón C (2002) Biomass, production, and rhizome growth near the northern limit of sea grass (Zostera marina) distribution. Aquat Bot 72:183–189CrossRefGoogle Scholar
  12. Duarte CM, Marbá N, Gacia E, Fourqurean JW, Beggins J, Barrón C, Apostolaki ET (2010) Seagrass communities metabolism: assessing the carbon sink capacity of seagrass meadows. Global Biogeochem Cy 24:GB4032CrossRefGoogle Scholar
  13. Fonseca MS, Fisher JS (1986) A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration. Mar Ecol-Prog Ser 29:15–22CrossRefGoogle Scholar
  14. Fonseca M, Kenworthy W (1987) Effects of current on photosynthesis and distribution of seagrasses. Aquat Bot 27:59–79CrossRefGoogle Scholar
  15. Geertz-Hansen O, Montes C, Duarte CM, Sand-Jensen K, Marbá N, Grillas P (2011) Ecosystem metabolism in a temporary Mediterranean marsh (Doñana National Park, SW Spain). Biogeosciences 8:963–971CrossRefGoogle Scholar
  16. Glud RN (2008) Oxygen dynamics of marine sediments. Mar Biol Res 4:243–289CrossRefGoogle Scholar
  17. Gorning DG, Nikora VI (2002) Despiking acoustic Doppler velocimeter data. J Hydraul Eng 128:117–126CrossRefGoogle Scholar
  18. Hansen JCR, Reidenbach MA (2012) Wave and tidally driven flows in eelgrass beds and their effect on sediment suspension. Mar Ecol-Prog Ser 448:271–287CrossRefGoogle Scholar
  19. Holtappels M, Noss C, Hancke K, Cathalot C, McGinnis DF, Lorke A, Glud RN (2015) Aquatic eddy correlation: quantifying the artificial flux caused by stirring-sensitive O2 sensor. PLoS One 10(1):e0116564. doi:10.1371/journal.pone.0116564CrossRefGoogle Scholar
  20. Huettel M, Røy H, Precht E, Ehrenhauss S (2003) Hydrodynamical impact on biogeochemical processes in aquatic sediments. Dev Hydrob 494:231–236CrossRefGoogle Scholar
  21. Hume AC, Berg P, McGlathery KJ (2011) Dissolved oxygen fluxes and ecosystem metabolism in an eelgrass (Zostera marina) meadow measured with the eddy correlation technique. Limnol Oceanogr 56(1):86–96CrossRefGoogle Scholar
  22. Jassby AD, Platt T (1976) Mathematical formulation of relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547CrossRefGoogle Scholar
  23. Jørgensen BB, Revsbech NP (1985) Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol Oceanogr 30(1):111–122CrossRefGoogle Scholar
  24. Koopmans DJ, Berg P (2015) Stream oxygen flux and metabolism determined with the open water and aquatic eddy covariance techniques. Limnol Oceanogr 60:1344–1355CrossRefGoogle Scholar
  25. Kuwae T, Kamio K, Inoue T, Miyoshi E, Uchiyama Y (2006) Oxygen exchange flux between sediment and water in an intertidal sandflat, measured in situ by the eddy-correlation method. Mar Ecol-Prog Ser 307:59–68CrossRefGoogle Scholar
  26. Lawson SE, Wiberg PL, McGlathery KJ (2007) Wind-driven sediment suspension controls light availability in a shallow coastal lagoon. Estuar Coast 30:102–112CrossRefGoogle Scholar
  27. Lee K-S, Park SR, Kim YK (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J Exp Mar Biol Ecol 350:144–175CrossRefGoogle Scholar
  28. Lorrai CL, McGinnis DF, Berg P, Brand A, Wüest A (2010) Application of oxygen eddy correlation in aquatic systems. J Atmos Ocean Tech 27:1533–1546CrossRefGoogle Scholar
  29. Long MH, Koopmans D, Berg P, Rysgaard S, Glud RN, Søgaard DH (2012) Oxygen exchange and ice melt measured at the icewater interface by eddy correlation. Biogeosciences 9:1957–1967CrossRefGoogle Scholar
  30. Long MH, Berg P, de Beer D, Zieman JC (2013) In situ coral reef oxygen metabolism: an eddy correlation study. PLoS One 8(3):e58581. doi:10.1371/journal.pone.0058581CrossRefGoogle Scholar
  31. Long MH, Berg P, McGlathery KJ, Zieman J (2015) Sub-trophic seagrass ecosystem metabolism measured by eddy covariance. Mar Ecol-Prog Ser 529:75–90CrossRefGoogle Scholar
  32. Lovett GM, Cole JJ, Pace ML (2006) Is net ecosystem production equal to ecosystem carbon accumulation? Ecosystems 9:1–4Google Scholar
  33. Mass T, Genin A, Shavit U, Grinstein M, Tchernov D (2010) Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. P Natl Acad Sci USA 107:2527–2531CrossRefGoogle Scholar
  34. Martin S, Clavier J, Guarini J, Chauvaud L, Hily C, Grall J, Thouzeau G, Jean F, Richard J (2005) Comparison of Zostera marina and maerl communities metabolism. Aquat Bot 83:161–174CrossRefGoogle Scholar
  35. McGillis WR, Langdon C, Loose B, Yates KK, Corredor J (2011) Productivity of a coral reef using boundary layer and enclosure methods. J Geophys Res 38:L03611. doi:10.1029/2010GL046179Google Scholar
  36. Murray L, Wetzel RL (1987) Oxygen production and consumption associated with the major autotrophic components in two temperate seagrass communities. Mar Ecol-Prog Ser 38:231–239CrossRefGoogle Scholar
  37. Nishihara GN, Ackerman JD (2009) Diffusive boundary layers do not limit the photosynthesis of the aquatic macrophyte Vallisneria americana at moderate flows and saturating light level. Limnol Oceanogr 54:1874–1882CrossRefGoogle Scholar
  38. Nixon SW, Oviatt CA (1972) Preliminary measurements of midsummer metabolism in beds of eelgrass, Zostera marina. Ecology 53:150–153CrossRefGoogle Scholar
  39. Odum HT (1956) Primary production in flowing waters. Limnol Oceanogr 1:102–117CrossRefGoogle Scholar
  40. Precht E, Huettel M (2003) Advective pore-water exchange driven by surface gravity waves and its ecological implications. Limnol Oceanogr 48:1647–1684CrossRefGoogle Scholar
  41. Precht E, Franke U, Polerecky L, Huettel M (2004) Oxygen dynamics in permeable sediments with wave-driven pore water exchange. Limnol Oceanogr 49:693–705CrossRefGoogle Scholar
  42. Pollard PC, Greenway M (2013) Seagrasses in tropical Australia, productive and abundant for decades decimated overnight. J Bioscience 38:157–166CrossRefGoogle Scholar
  43. Reimers CE, Özkan-Haller T, Berg P, Devol A, McCann-Grosvenor K, Sanders RD (2012) Benthic oxygen consumption rates during hypoxia conditions on the Oregon continental shelf: evaluation of the eddy correlation method. J Geophys Res 117:C02021. doi:10.1029/2011JC007564CrossRefGoogle Scholar
  44. Risgaard-Petersen N, Ottosen LDM (2000) Nitrogen cycling in two temperate Zostera marina beds: seasonal variation. Mar Ecol-Prog Ser 198:93–107CrossRefGoogle Scholar
  45. Rheuban JE, Berg P, McGlathery KJ (2014) Multiple timescale processes drive ecosystem metabolism in eelgrass (Zostera marina) meadows. Mar Ecol-Prog Ser 507:1–13CrossRefGoogle Scholar
  46. Staehr PA, Testa JM, Kemp WM, Cole JJ, Sand-Jensen K, Smith SV (2012) The metabolism of aquatic ecosystem: history, applications, and future challenges. Aquat Sci 74:15–29CrossRefGoogle Scholar
  47. Swinbank WC (1951) The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J Meteorol 8:135–146CrossRefGoogle Scholar
  48. Turk D, Yates KK, Vega-Rodriguez M, Toro-Farmer G, L’Esperance C, Melo N, Ramesewak D, Dowd M, Cerdeira Estrada S, Muller-Karger FE, Herwitz SR, McGillis WR (2015) Community metabolism in shallow coral reef and seagrass ecosystems, lower Florida Keys. Mar Ecol-Prog Ser 538:35–52CrossRefGoogle Scholar
  49. Van de Bogert MC, Carpenter SR, Cole JJ, Pace ML (2007) Assessing pelagic benthic metabolism using free water measurements. Limnol Oceanogr-Meth 5:145–155CrossRefGoogle Scholar

Copyright information

© Korea Institute of Ocean Science & Technology (KIOST) and the Korean Society of Oceanography (KSO) and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Jae Seong Lee
    • 1
    • 2
    Email author
  • Dong-Jin Kang
    • 2
    • 3
  • Elitsa Hineva
    • 4
  • Violeta Slabakova
    • 4
  • Valentina Todorova
    • 4
  • Jiyoung Park
    • 1
    • 2
  • Jin-Hyung Cho
    • 5
  1. 1.Marine Chemistry and Geochemistry Research CenterKIOSTAnsanKorea
  2. 2.Department of Integrated Ocean SciencesUniversity of Science and TechnologyAnsanKorea
  3. 3.Korea South Pacific Ocean Research CenterKIOSTChuukMicronesia
  4. 4.Institute of OceanologyBulgarian Academy of SciencesVarnaBulgaria
  5. 5.Maritime Security Research CenterKIOSTAnsanKorea

Personalised recommendations