Ocean Science Journal

, Volume 50, Issue 3, pp 519–527 | Cite as

Phenology of host Chondrus ocellatus with filamentous green endophyte infection

  • Hang Gil Choi
  • Changsong Kim
  • Young Sik Kim
  • Soon Jeong Lee
  • Myoung Ae Park
  • Ki Wan Nam


Monthly variations in gametophyte and tetrasporophyte biomass of Chondrus ocellatus Holmes, a commercial carragenophyte alga, were examined at wave-exposed and sheltered shore stations of Jungdori, Wando, Korea from September, 2013 to August, 2014. The frequency of infection of the fronds with a green filamentous endophyte was investigated and the endophyte was identified using tufA analysis. Biomass of C. ocellatus was significantly greater at the exposed shore (331.84 g wet wt. m-2) than at the sheltered shore (181 g wet wt. m-2); the average biomass was 259 g wet wt. m-2. Gametophyte biomass of C. ocellatus accounted for 64.25% of the total biomass (259 g wet wt. m-2); tetrasporophyte biomass was 93.05 g wet wt. m-2 (35.93%). Biomass was minimal in winter and maximal in summer at both stations and similar patterns were found for gametophyte and tetrasporophyte biomass. Frond lengths and weights of C. ocellatus were slightly greater at the exposed shore than at the sheltered shore. Fronds of C. ocellatus were infected by a green endophytic species, which grew in between the cortical and medullar tissue and was identified as Ulvella ramosa by tufA analysis. We conclude that the optimal harvesting period of the C. ocellatus field population in terms of biomass might be autumn, after the rapid growth period. Additional in-depth research on the endophytes, such as infection mechanism and frequency, should be performed in order to maintain and manage the field populations of C. ocellatus.


phenology Chondrus ocellatus endophytic infection gametophyte sporophyte 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  2. Barabanova AO, Yermak IM (2012) Structural peculiarities of sulfated polysaccharides from red algae Tichocarpus crinitus (Tichocarpaceae) and Chondrus pinnulatus (Gigartinaceae) collected at the Russian Pacific coast. In Kim SK (ed) Handbook of marine macroalgae: biotechnology and applied phycology. John Wiley & Sons Ltd, Chichester, pp 193–204Google Scholar
  3. Bell EC, Denny MW (1994) Quantifying “wave exposure”: a simple device for recording maximum velocity and results of its use at several field sites. J Exp Mar Biol Ecol 181:9–29CrossRefGoogle Scholar
  4. Bhattacharya D (1985) The demography of fronds of Chondrus crispus Stackhouse. J Exp Mar Biol Ecol 91:217–231CrossRefGoogle Scholar
  5. Bouarab K, Potin P, Weinberger F, Correa J, Kloareg B (2001) The Chondrus crispus-Acrochaete operculata host-pathogen association, a novel model in glycobiology and applied phycopathology. J Appl Phycol 13:185–193CrossRefGoogle Scholar
  6. Bown P, Plumb J, Sánchez-Baracaldo P, Hayes PK, Brodie J (2003) Sequence heterogeneity of green (Chlorophyta) endophytic algae associated with a population of Chondrus crispus (Gigartinaceae, Rhodophyta). Eur J Phycol 38:153–163CrossRefGoogle Scholar
  7. Brodie J, Guiry MD, Masuda M (1993) Life history, morphology and crossability of Chondrus ocellatus forma ocellatus and C. ocellatus forma crispoides (Gigartinales, Rhodophyta) from the north-western Pacific. Eur J Phycol 28:183–196CrossRefGoogle Scholar
  8. Brodie J, Maggs CA, John DM (2007) Green seaweeds of Britain and Ireland. British Phycological Society, London, 242 pGoogle Scholar
  9. Carmona R, Santos R (2006) Is there an ecophysiological explanation for the gametophyte-tetrasporophyte ratio in Gelidium sesquipedale (Rhodophyta)? J Phycol 42:259–269CrossRefGoogle Scholar
  10. Carrington E, Grace SP, Chopin T (2001) Life history phases and the biomechanical properties of the red alga Chondrus crispus (Rhodophyta). J Phycol 37:699–704CrossRefGoogle Scholar
  11. Chen LCM, McLachlan J, Neish AC, Shacklock PF (1973) The ratio of kappa-to lambda-carrageenan in nuclear phases of the rhodophycean algae, Chondrus crispus and Gigartina stellate. J Mar Biol Assoc UK 53:11–16CrossRefGoogle Scholar
  12. Choi HG, Kim BY, Park SK, Heo JS, Kim C, Kim YS, Nam KW (2015) Effects of wave action and grazers on frond perforation of the green alga, Ulva australis. Algae 30:59–66CrossRefGoogle Scholar
  13. Chopin T, Floc’h JY (1992) Eco-physiological and biochemical study of two of the most contrasting forms of Chondrus crispus (Rhodophyta, Gigartinales). Mar Ecol-Prog Ser 81:185–195CrossRefGoogle Scholar
  14. Correa JA (1997) Infectious diseases of marine algae: current knowledge and approaches. In Round FE, Chapman DJ (eds) Progress in phycological research. Vol. 12. Biopress Ltd, Bristol, pp 149–180Google Scholar
  15. Correa JA, Flores V, Garrido J (1994) Green patch disease in Iridaea laminarioides (Rhodophyta) caused by Endophyton sp. (Chlorophyta). Dis Aquat Organ 19:203–213CrossRefGoogle Scholar
  16. Correa JA, McLachlan JL (1991) Endophytic algae of Chondrus crispus (Rhodophyta).III. Host specificity. J Phycol 27:448–459CrossRefGoogle Scholar
  17. Correa JA, McLachlan JL (1992) Endophytic algae of Chondrus crispus (Rhodophyta). IV. Effects on the host following infections by Acrochaete operculata and A. heteroclada (Chlorophyta). Mar Ecol-Prog Ser 81:73–87CrossRefGoogle Scholar
  18. Correa JA, McLachlan JL (1994) Endophytic algae of Chondrus crispus (Rhodophyta). V. Fine structure of the infection by Acrochaete operculata (Chlorophyta). Eur J Phycol 29:33–47CrossRefGoogle Scholar
  19. Correa JA, Nielsen R, Grund DW (1988) Endophytic algae of Chondrus crispus (Rhodophyta). II. Acrochaete heteroclada sp. nov., A. operculata sp. nov., and Phaeophila dendroides (Chlorophyta). J Phycol 24:528–539Google Scholar
  20. Correa JA, Sánchez PA (1996) Ecological aspects of algal infectious diseases. Hydrobiologia 326/327:89–95CrossRefGoogle Scholar
  21. Craige JS, Correa JA (1996) Etiology of infectious diseases in cultivated Chondrus crispus (Gigartinales, Rhodophyta). Hydrobiologia 326/327:97–104CrossRefGoogle Scholar
  22. Craige JS, Pringle JD (1978) Spatial distribution of tetrasporophyte and gametophyte in four maritime populations of Chondrus crispus. Can J Bot 56:2910–2914CrossRefGoogle Scholar
  23. Dixon PS (1965) Perennation, vegetative propagation and algal life histories with special reference to Asparagopsis and other Rhodophyta. Bot Gothoburg 3:67–74Google Scholar
  24. Famà P, Wysor B, Kooistra WHCF, Zuccarello GC (2002) Molecular phylogeny of genus Caulerpa (Caulerpales, Chlorophyta) inferred from chloroplast tufA gene. J Phycol 38:1040–1050CrossRefGoogle Scholar
  25. Frantz G (1989) Polysaccharies in pharmacy: current applications and furture concepts. Plnata Med 55:493–497CrossRefGoogle Scholar
  26. Fournet I, Deslandes E, Floc′h JY (1993) Iridescence: a useful criterion to sort gametophytes from sporophytes in the red alga Chondrus crispus. J Appl Phycol 5:535–537CrossRefGoogle Scholar
  27. Gómez I, Westermeier, RC (1991) Frond regrowth from basal disc in Iridaea laminarioides (Rhodophyta, Gigartinales) at Mehuín, southern Chile. Mar Ecol-Prog Ser 73:83–91CrossRefGoogle Scholar
  28. Jaime ZP, Renato WH (1996) Phenology of Gigartina skottsbergii (Gigartinaceae, Rhodophyta) in Ancud Bay, southern Chile. Hydrobiologia 326/327:253–258CrossRefGoogle Scholar
  29. Ji Y, Guo J (1992) The effect of temperature on the growth and development of Chondrus ocellatus. J Dalian Fish Coll Dalian Shuichan Xueyuan Xuebao 7:32–37Google Scholar
  30. Kang JW (1968) Illustrated encyclopedia of fauna and flora of Korea. Vol. 8. Ministry of Education, Samwha Press, Seoul, 465 p (in Korean)Google Scholar
  31. Kim YS, Choi HG, Nam KW (2006) Phenology of Chondrus ocellatus in Chengsapo near Busan, Korea. J Appl Phycol 18:551–556CrossRefGoogle Scholar
  32. Kim C, Kim YS, Choi HG, Nam KW (2014) New records of three endophytic green algae from Grateloupia spp. Rhodophyta) in Korea. Algae 29:127–136CrossRefGoogle Scholar
  33. Lazo ML, Greenwell M, McLachlan J (1989) Population structure of Chondrus crispus Stackhouse (Gigartinaceae, Rhodophyta) along the coast of Prince Edward Island, Canada: distribution of gametophytic and sporophytic fronds. J Exp Mar Biol Ecol 126:45–58CrossRefGoogle Scholar
  34. Lee SJ, Park MA, Abel, C, Park SK, Kim H, Kim YS, Choi HG (2013) A study on the growth and disease of Chondrus ocellatus in Korea. J Fish Pathol 26:265–274 (in Korean)CrossRefGoogle Scholar
  35. Lein TE, Sjotun K, Wakili S (1991) Mass-occurrence of a brown filamentous endophyte in the lamina of the kelp Laminaria hyperborea (Gunnerus) Foslie along the southwestern coast of Norway. Sarsia 76:187–193Google Scholar
  36. Li X, Jiang Q, Lu J, TaoW (1994) A description of Chondrus ocellatus Holmes and its variation in bay of Liadong peninsula. J Dalian Fish Coll Dalian Shuichan Xueyuan Xuebao 9:21–25Google Scholar
  37. Li X, Zhao P, Wang G, Li D, Wang J, Duan D (2010) Effects of temperature and irradiance on early development of Chondrus ocellatus Holm (Gigartinaceae, Rhodophyta). Chin J Oceanol Limn 28:508–513CrossRefGoogle Scholar
  38. Luxoro C, Santelices B (1989) Additional evidence for ecological differences among isomorphic reproductive phases of Iridaea laminarioides (Rhodophyta: Gigartinales). J Phycol 25:206–212CrossRefGoogle Scholar
  39. Mathieson AC, Burns RL (1975) Ecological studies of economic red algae. V. Growth and reproduction of natural and harvested population of Chondrus crispus Stackhouse in New Hampshire. J Exp Mar Biol Ecol 17:137–156CrossRefGoogle Scholar
  40. May G (1986) Life history variations in a predominantly gametophytic population of Iridaea cordata (Gigartinaceae, Rhodophyta). J Phycol 22:448–455CrossRefGoogle Scholar
  41. McLachlan J, Blanchard W, Field C, Lewis NI (2011) Gametophyte life-history dominance of Chondrus crispus (Gigartinaceae, Rhodophyta) along the Atlantic coast of Nova Scotia, Canada. Algae 26:51–60CrossRefGoogle Scholar
  42. McCandless EL, Craigie JS, Walter JA (1973) Carrageenans in the gametophytic and sporophytic stages of Chondrus crispus. Planta 112:201–212CrossRefGoogle Scholar
  43. Melo RA, Neushul M (1993) Life-history and reproductive potential of the agarophyte Gelidium robustum in California. Hydrobiologia 261:223–229CrossRefGoogle Scholar
  44. Nielsen R, McLachlan J (1986) Investigations of the marine algae of Nova Scotia. XVI. The occurrence of small green algae. Can J Bot 64:808–814CrossRefGoogle Scholar
  45. Nikapitiya C, Pushpamali WA, De Zoysa M, Lee J (2008) Isolation and purification of sulfated anticoagulant compound from fermented Irish moss (Chondrus ocellatus). Inter J Algae 10:365–378CrossRefGoogle Scholar
  46. Ploguerne E, Trepos R, Jechoux G, Lennon JF, Deslandes, E, Stiger- Povreau V (2007) An investigation of the presence and variations in abundance of UV-absorbing structures in Grateloupia turuturu (Yamada) (Halymeniaceae, Rhodophyta) from Brittany (France). Crypto Algol 28:159–167Google Scholar
  47. Plumb J (1999) Population dynamics and endophytic flora of Chondrus crispus (Rhodophyta): a temporal study. Ph. D. Thesis, University of the West of England.Google Scholar
  48. Sánchez, PC, Correa JA, Garcia-Reina G (1996) Host-specificity of Endophyton ramosum (Chlorophyta), the causative agent of green patch disease in Mazzaella laminarioides (Rhodophyta). Eur J Phycol 31:173–179CrossRefGoogle Scholar
  49. Sarkar A, Pandey JP, Singh A, Tiwari L, Kumar A (2014) Potential use of algae-a review. J Eng & Technol Res 2:57–68Google Scholar
  50. Scrosati R, Garbary DJ, McLachlan J (1994) Reproductive ecology of Chondrus crispus (Rhodophyta, Gigartinales) from Nova Scotia, Canada. Bot Mar 37:293–300CrossRefGoogle Scholar
  51. Scrosati R, Mudge B (2004a) Persistence of gametophyte predominance in Chondrus crispus (Rhodophyta, Gigartinaceae) from Nova Scotia after 12 years. Hydrobiologia 519:215–218CrossRefGoogle Scholar
  52. Scrosati R, Mudge B (2004b) Effects of elevation, wave exposure, and year on the proportion of gametophytes and tetrasporophytes in Mazzaella parksii (Rhodophyta, Gigartinaceae) populations. Hydrobiologia 520:199–205CrossRefGoogle Scholar
  53. Sharp GJ, Semple R, Wilson M, Vandermuelen H, Rowland B (2008) A survey of the distribution and abundance of Irish moss (Chondrus crispus) on the south shore of Nova Scotia. Can Manu Rep Fish Aquat Sci 2856:1–34Google Scholar
  54. Sharp GJ, Têtu C, Semple R, Jones D (1993) Recent changes in the seaweed community of western Prince Edward Island: implications for the seaweed industry. Hydrobiologia 260/261:291–296CrossRefGoogle Scholar
  55. Stebbins GL, Hill GJC (1980) Did multicellular plants invade the land? Am Nat 115:342–353CrossRefGoogle Scholar
  56. Sokal RR, Rohlf FJ (1995) Biometry. 3rd edn. Freeman WH, New York, 887 pGoogle Scholar
  57. Taylor ARA, Chen LCM (1994) Chondrus Stackhouse. In Akatsuka I (ed) Biology of economic algae. SPB Academic Publishing, The Hague, pp 35–76Google Scholar
  58. Thornber CS, Gaines SD (2004) Population demographics in species with biphasic life cycles. Ecology 85:1661–1664CrossRefGoogle Scholar
  59. Vega JMA, Meneses I (2001) Seasonal and spatial monitoring of productivity and of reproduction of Chondrus canaliculatus (Gigartinales, Rhodophyta) from Chile. Bot Mar 44:571–581CrossRefGoogle Scholar
  60. Vergés A, Paul NA, Steinberg PD (2008) Sex and life history stage alter herbivore responses to a chemically defended red alga. Ecology 89:1334–1343CrossRefGoogle Scholar
  61. Zhou G, Sun YP, Zhang Y, Li Z, Xu Z (2004) In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus. Pharm Res 50:47–53CrossRefGoogle Scholar

Copyright information

© Korea Ocean Research & Development Institute (KORDI) and the Korean Society of Oceanography (KSO) and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hang Gil Choi
    • 1
  • Changsong Kim
    • 2
  • Young Sik Kim
    • 2
  • Soon Jeong Lee
    • 3
  • Myoung Ae Park
    • 4
  • Ki Wan Nam
    • 5
  1. 1.Faculty of Biological Science and Institute of Basic Natural SciencesWonkwang UniversityIksanKorea
  2. 2.Department of Marine Biotechnology, College of Ocean Science and EngineeringKunsan National UniversityGunsanKorea
  3. 3.Seaweed Research CenterNFRDIMokpoKorea
  4. 4.Aquatic Life Disease Control DivisionNFRDIBusanKorea
  5. 5.Department of Marine Biology, College of Fisheries SciencesPukyong National UniversityBusanKorea

Personalised recommendations