Ocean Science Journal

, Volume 47, Issue 3, pp 323–329 | Cite as

Impact of multiple satellite ocean color samplings in a day on assessing phytoplankton dynamics

  • ZhongPing Lee
  • Mingshun Jiang
  • Curtiss Davis
  • Nima Pahlevan
  • Yu-Hwan Ahn
  • Ronghua Ma
Article
Part of the following topical collections:
  1. Topical Issue: GOCI Data Processing and Ocean Applications

Abstract

Ocean-color imagers on conventional polar-orbiting satellites have a revisit time of ∼2 days for most regions, which is further reduced if the area is frequently cloudy. The Geostationary Ocean Color Imager (GOCI), the first ocean-color imager on a geostationary satellite, provides measurements 8 times a day, thus significantly improving the frequency of measurements for studies of ocean environments. Here, we use results derived from GOCI measurements over Taihu Lake to demonstrate that the extra sampling can be used to improve the accuracy of statistically averaged longer-term (daily) measurements. Additionally, using numerical simulations, we demonstrate that the coupling of diurnal variations of both biomass and photosynthetic available radiation can improve the accuracy of daily primary production estimates. These results echo that higher sampling frequency can improve our estimates of longer-term dynamics of biogeochemical processes and highlights the value of ocean color measurements from geostationary satellites.

Key words

ocean color remote sensing geostationary phytoplankton dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackleson SG (2006) Optical determination of suspended sediment dynamics in western Long Island Sound and the Connecticut River plume. J Geophys Res 111:C07009. doi:07010.01029/02005JC003214CrossRefGoogle Scholar
  2. Ahn Y-H (2012) Present status of GOCI/COMS and GOCI-2. In. Seoul, South KoreaGoogle Scholar
  3. Balch WM, Gordon HR, Bowler BC, Drapeau DT, Booth ES (2005) Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data. J Geophys Res 110. doi:10.1029/2004JC002560Google Scholar
  4. Behrenfeld MJ, Westberry TK, Boss ES, O’Malley RT, Siegel DA, Wiggert JD, Franz BA, McClain CR, Feldman GC, Doney SC, Moore JK, Dall’Olmo G, Milligan AJ, Lima I, Mahowald N (2009) Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeosciences 6:779–794CrossRefGoogle Scholar
  5. Berk A, Bernstein L, Robertson DC (1989) MODTRAN: A moderate resolution model for LOWTRAN 7. US Air Force, Geophys Lab, Final Report A733412, 48 pGoogle Scholar
  6. Binding CE, Bowers DG, Mitchelson-Jacob EG (2005) Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters; the impact of variable particle scattering properties. Remote Sens Environ 94:373–383CrossRefGoogle Scholar
  7. Bracher A, Vountas M, Dinter T, Burrows JP, Rottgers R, Peeken I (2009) Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data. Biogeosciences 6:751–764CrossRefGoogle Scholar
  8. Bricaud A, Ciotti AM, Gentili B (2012) Spatial-temporal variations in phytoplankton size and colored detrital matter absorption at global and regional scales, as derived from twelve years of SeaWiFS data (1998–2009). Global Biogeochem Cy 26: GB1010. doi:1010.1029/2010GB003952Google Scholar
  9. D’sa EJ, Ko DS (2008) Short-term influences on suspended particulate matter distribution in the northern Gulf of Mexico: Satellite and model observations. Sensors 8:4249–4264CrossRefGoogle Scholar
  10. Dall’Olmo G, Gitelson AA, Rundquist DC, Leavitt B, Barrow T, Holz JC (2005) Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sens Environ 96:176–187CrossRefGoogle Scholar
  11. Duan H, Ma R, Xu X, Kong F, Zhang S, Kong W, Hao J, Shang L (2009) Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environ Sci Tech 43:3522–3528CrossRefGoogle Scholar
  12. Gao B-C, Davis CO, Goetz AFH (2006) A Review of Atmospheric Correction Techniques for Hyperspectral Remote Sensing of Land Surfaces and Ocean Color. In: IGARSS Geoscience and Remote Sensing Symposium, Denver, CO, pp1979–1981Google Scholar
  13. Gao BC, Montes MJ, Ahmad Z, Davis CO (2000) Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space. Appl Optics 39:887–896CrossRefGoogle Scholar
  14. Gernez P, Antoine D, Huot Y (2011) Diel cycles of the particulate beam attenuation coefficient under varying trophic conditions in the northeastern Mediterranean Sea: Observations and modeling. Limnol Oceanogr 56:17–36CrossRefGoogle Scholar
  15. Hu C, Lee Z, Ma R, Yu K, Li D, Shang S (2010) Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J Geophys Res 115: C04002. doi:04010.01029/02009JC005511Google Scholar
  16. IOCCG (2000) Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters. In: Sathyendranath S (ed) Reports of the International Ocean-Colour Coordinating Group, No.3. Dartmouth, CanadaGoogle Scholar
  17. IOCCG (2006) Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications. In: Lee Z-P (ed) Reports of the International Ocean-Colour Coordinating Group, No. 5, Dartmouth, Canada, pp 126Google Scholar
  18. Lee C, Schwab DJ, Beletsky D, Stroud J, Lesht B (2007) Numerical modeling of mixed sediment resuspension, transport, and deposition during the March 1998 episodic events in southern Lake Michigan. J Geophys Res 112. doi:10.1029/2005JC003419Google Scholar
  19. Lorenzen CJ (1963) Diurnal variation in photosynthetic activity of natural phytoplankton populations. Limnol Oceanogr 8:56–62CrossRefGoogle Scholar
  20. Luo LC, Qin BQ (2004) Numerical simulation based on a three dimensional shallow-water hydrodynamic model-current circulations in Lake Taihu with prevailing wind forcing. J Hydrodyn 18:686–691Google Scholar
  21. Ma R, Duan H, Gu X, Zhang S (2008) Detecting Aquatic Vegetation Change of Taihu Lake, China Using Multi-Temporal Satellite Imageries. Sensors 8:3988–4005CrossRefGoogle Scholar
  22. McClain CR (2009) A Decade of Satellite Ocean Color Observations. Annu Rev Mar Sci 1:19–42CrossRefGoogle Scholar
  23. Miller RL, McKee BA (2004) Using MODIS 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens Environ 93:259–266CrossRefGoogle Scholar
  24. Morrison JR (2003) In situ determination of the quantum yield of phytoplankton chlorophyll a fluorescence: A simple algorithm, observations, and a model. Limnol Oceanogr 48:618–631CrossRefGoogle Scholar
  25. Moses WJ, Gitelson AA, Berdnikov S, Povazhnyy V (2009) Satellite Estimation of Chlorophyll-a Concentration Using the Red and NIR Bands of MERIS-The Azov Sea Case Study. IEEE Geosci Remote Sens Lett 6:845–849CrossRefGoogle Scholar
  26. Neukermans G, Ruddick K, Bernard E, Ramon D, Nechad B, Deschamps PY (2009) Mapping total suspended matter from geostationary satellites: A feasibility study with SEVIRI in the Southern North Sea. Opt Express 17:14029–14052CrossRefGoogle Scholar
  27. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701Google Scholar
  28. Riley GA (1946) Factors controlling phytoplankton populations on Georges Bank. J Mar Res 6:54–73Google Scholar
  29. Sathyendranath S, Watts L, Devred E, Platt T, Caverhill C, Maass H (2004) Discrimination of diatoms from other phytoplankton using ocean-colour data. Mar Ecol Prog Ser 272:59–68CrossRefGoogle Scholar
  30. Schott JR (2007) Remote Sensing The Image Chain Approach. Oxford University Press, New York, 688 pGoogle Scholar
  31. Wang M, Shi W, Jiang L (2012) Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region. Opt Express 20:741–753CrossRefGoogle Scholar

Copyright information

© Korea Ocean Research & Development Institute (KORDI) and the Korean Society of Oceanography (KSO) and Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • ZhongPing Lee
    • 1
  • Mingshun Jiang
    • 1
  • Curtiss Davis
    • 2
  • Nima Pahlevan
    • 1
  • Yu-Hwan Ahn
    • 3
  • Ronghua Ma
    • 4
  1. 1.Department of Environmental, Earth and Ocean SciencesUniversity of MassachusettsBostonUSA
  2. 2.College of Earth, Ocean, and Atmospheric SciencesOregon State UniversityCorvallisUSA
  3. 3.Korea Ocean Satellite CenterKIOST, AnsanSeoulKorea
  4. 4.Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina

Personalised recommendations