Ocean Science Journal

, Volume 47, Issue 2, pp 123–145 | Cite as

Modelling the effect of climate change on the wave climate of the world’s oceans

Article

Abstract

This paper analyses the trends and the future projections of significant wave height in several ocean areas at different parts of the world. It uses a stochastic Bayesian hierarchical space-time model, with a regression component with atmospheric levels of CO2 as covariates in order to estimate the expected long-term trends and make future projections towards the year 2100. The model was initially developed for an area in the North Atlantic ocean, and has been found to perform reasonably well there, and it is now investigated how the model performs for other ocean areas. 11 new ocean areas have been analysed with the model, and this paper presents the results pertaining to the estimated long-term trends and future projections of monthly maximum significant wave height for each of the 12 ocean areas.

Key words

Ocean wave climate climate change significant wave height Bayesian hierarchical space-time models atmosphereocean modelling stochastic wave model trends and projections of wave climate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrade C, Pires HO, Taborda R, Freitas MC (2007) Projecting future changes in wave climate and coastal response in Portugal by the end of the 21st century. J Coast Res 50:253–257Google Scholar
  2. Bitner-Gregersen EM, de Valk C (2008) Quality Control Issues in Estimating Wave Climate from Hindcast and Satellite Data. In: Proceedings of 27th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2008), American Society of Mechanical Engineers, Estoril, Portugal, 15–20 Jun, pp 819–827Google Scholar
  3. Bitner-Gregersen EM, Hagen Ø (1990) Uncertainties in data for the offshore environment. Struct Saf 7:11–34CrossRefGoogle Scholar
  4. Caires S, Sterl A (2005) A New Nonparametric Method to Correct Model Data: Application to Significant Wave Height from ERA-40 Re-Analysis. J Atmos Ocean Tech 22:443–459CrossRefGoogle Scholar
  5. Caires S, Swail V (2004) Global wave climate trend and variability analysis. In: Preprints of 8th International Workshop on Wave Hindcasting and Forecasting, North Shore, Hawaii, 14–19 NovGoogle Scholar
  6. Caires S, Swail VR, Wang XL (2006) Projection and Analysis of Extreme Wave Climate. J Climate 19:5581–5605CrossRefGoogle Scholar
  7. Debernard JB, Røed LP (2008) Future wind, wave and storm surge climate in the Northern Seas: A revisit. Tellus A 60:427–438CrossRefGoogle Scholar
  8. Grabemann I, Weisse R (2008) Climate change impact on extreme wave conditions in the North Sea: An ensemble study. Ocean Dynam 58:199–212CrossRefGoogle Scholar
  9. IPCC (2001) Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pGoogle Scholar
  10. Jain AK, Kheshgi HS, Hoffert MI, Wuebbles DJ (1995) Distribution of radiocarbon as a test of global carbon cycle models. Global Biogeochem Cy 9:153–166CrossRefGoogle Scholar
  11. Jain AK, Kheshgi HS, Wuebbles DJ (1994) Integrated Science Model for Assessment of Climate Change. Technical report UCRL-JC-116526, Lawrence Livermore National Laboratory, 19 pGoogle Scholar
  12. Janssen PA, Viterbo P (1996) Ocean Waves and the Atmospheric Climate. J Climate 9:5581–5605CrossRefGoogle Scholar
  13. Kheshgi HS, Jain AK (2003) Projecting future climate change: Implications of carbon cycle model intercomparisons. Global Biogeochem Cy 17:1047CrossRefGoogle Scholar
  14. Lionello P, Cogo S, Galati MB, Sanna A (2008) The Mediterranean surface wave climate inferred from future scenario simulations. Global Planet Change 63:152–162CrossRefGoogle Scholar
  15. Mori N, Yasuda T, Mase H, Tom T, Oku Y (2010) Projection of Extreme Wave Climate Change under Global Warming. Hydrol Res Lett 4:15–19CrossRefGoogle Scholar
  16. Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grügler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Emissions scenarios. Cambridge University PressGoogle Scholar
  17. Natvig B, Tvete IF (2007) Bayesian Hierarchical Space-time Modeling of Earthquake Data. Methodol Comput Appl 9:89–114CrossRefGoogle Scholar
  18. Ruggiero P, Komar PD, Allan JC (2010) Increasing wave heights and extreme value projections: The wave climate of the U.S. Pacific Northwest. Coast Eng 57:539–552Google Scholar
  19. Sasaki W, Hibiya T, Kayahara T (2006) Interannual variability and future projections of summertime ocean wave heights in the western North Pacific. Ocean Sci Discuss 3:1637–1651CrossRefGoogle Scholar
  20. Sterl A, Caires S (2005) Climatology, Variability and Extrema of Ocean Waves: The Web-based KNMI/ERA-40 Wave Atlas. Int J Climatol 25:963–977CrossRefGoogle Scholar
  21. Thoning KW, Tans PP, Komhyr WD (1989) Atmospheric Carbon Dioxide at Mauna Loa Observatory 2. Analysis of the NOAA GMCC Data, 1974–1985. J Geophys Res 94:8549–8565CrossRefGoogle Scholar
  22. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Vitebro P, Woolen J (2005) The ERA-40 re-analysis. Q J Roy Meteor Soc 131:2961–3012CrossRefGoogle Scholar
  23. Vanem E (2011) Long-term time-dependent stochastic modelling of extreme waves. Stoch Env Res Risk A 25:185–209CrossRefGoogle Scholar
  24. Vanem E, Bitner-Gregersen E (2012) Stochastic modelling of long-term trends in the wave climate and its potential impact on ship structural loads. Appl Ocean Res. Doi: 10.1016/j.apor.2012.05.006Google Scholar
  25. Vanem E, Huseby AB, Natvig B (2012a) A Bayesian Hierarchical Spatio-Temporal Model for Significant Wave Height in the North Atlantic. Stoch Env Res Risk A. doi: 10.1007/s00477-011-0522-4Google Scholar
  26. Vanem E, Huseby AB, Natvig B (2011) Bayesian Hierarchical Spatio-Temporal Modelling of Trends and Future Projections in the Ocean Wave Climate with a CO2 Regression Component. (Submitted)Google Scholar
  27. Vanem E, Huseby AB, Natvig B (2012b) Modeling Ocean Wave Climate with a Bayesian Hierarchical Space-Time Model and a Log-Transform of the Data. Ocean Dynam 62:355–375CrossRefGoogle Scholar
  28. Wang XJ, Zwiers FW, Swail VR (2004) North Atlantic Ocean Wave Climate Change Scenarios for the Twenty-First Century. J Climate 17:2368–2383CrossRefGoogle Scholar
  29. Wang XL, Swail VR (2006) Climate change signal and uncertainty in projections of ocean wave heights. Clim Dynam 26:109–126CrossRefGoogle Scholar
  30. Wikle CK (2003) Hierarchical Models in Environmental Science. Int Stat Rev 71:181–199CrossRefGoogle Scholar
  31. Wikle CK, Berliner LM, Cressie N (1998) Hierarchical Bayesian space-time models. Environ Ecol Stat 5:117–154CrossRefGoogle Scholar

Copyright information

© Korea Ocean Research & Development Institute (KORDI) and the Korean Society of Oceanography (KSO) and Springer Netherlands 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of OsloOsloNorway

Personalised recommendations