Ocean Science Journal

, Volume 46, Issue 4, pp 265–271 | Cite as

Picocyanobacterial abundances and diversity in surface water of the northwestern Pacific Ocean

  • Dong Han Choi
  • Jae Hoon Noh
  • Mi-Seon Hahm
  • Charity Mijin Lee


To understand picocyanobacterial distribution patterns in the northwestern Pacific Ocean, their abundances and genetic diversity were studied using flow cytometry and a barcoded amplicon pyrosequencing approach. At open ocean stations affected by the North Equatorial Current, Prochlorococcus was the predominant picocyanobacteria, and a high-light-adapted ecotype (HLII) made up most of the population. In contrast, at stations in shelf areas of the East China Sea (ECS) and South Sea, Synechococcus was the predominant picocyanobacteria and clade II was dominant. At other ECS stations affected by the Kuroshio Current, both Prochlorococcus and Synechococcus made up similar proportions of the picocyanobacterial community. These results indicate that picocyanobacterial diversity differs among oceanic regions, and that physicochemical properties related to dominant water masses, seem to be important in determining picocyanobacterial diversity.

Key words

Synechococcus Prochlorococcus diversity East China Sea Pacific Ocean 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlgren NA, Rocap G (2006) Culture isolation and cultureindependent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies. Appl Environ Microbiol 72:7193–7204CrossRefGoogle Scholar
  2. Campbell L, Vaulot D (1993) Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep-Sea Res 40:2043–2060CrossRefGoogle Scholar
  3. Chen F, Wang K, Kan JJ, Suzuki MT, Wommack KE (2006) Diverse and unique picocyanobacteria in Chesapeake Bay, revealed by 16S–23S rRNA internal transcribed spacer sequences. Environ Microbiol 72:2239–2243CrossRefGoogle Scholar
  4. Choi DH, Noh JH (2009) Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea. FEMS Microbiol Ecol 69:439–448CrossRefGoogle Scholar
  5. Fuller NJ, Marie D, Partensky F, Vaulot D, Post AF, Scanlan DJ (2003) Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Environ Microbiol 69:2430–2443CrossRefGoogle Scholar
  6. Haverkamp T, Acinas SG, Doeleman M, Stomp M, Huisman J, Stal LJ (2008) Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ Microbiol 10:174–188Google Scholar
  7. Huang S, Wilhelm SW, Harvey HR, Taylor K, Jiao N, Chen F (2011) Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J doi:10.1038/ismej.2011.106 (in Press)Google Scholar
  8. Jenkins BD, Zehr JP, Gibson A, Campbell L (2006) Cyanobacterial assimilatory nitrate reductase gene diversity in coastal and oligotrophic marine environments. Environ Microbiol 8:2083–2095CrossRefGoogle Scholar
  9. Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311:1737–1740CrossRefGoogle Scholar
  10. Lavin P, Gomez P, Gonzalez B, Ulloa O (2008) Diversity of the marine picocyanobacteria Prochlorococcus and Synechococcus assessed by terminal restriction fragment length polymorphisms of 16S–23S rRNA internal transcribed spacer sequences. Rev Chil Hist Nat 81:515–531CrossRefGoogle Scholar
  11. Lavin P, Gonzalez B, Santibanez JF, Scanlan DJ, Ulloa O (2010) Novel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific. Env Microbiol Rep 2:728–738CrossRefGoogle Scholar
  12. Li WKW (1994) Primary production of prochlorophytes, cyanobacteria, and eukaryotic ultraphytoplankton: Measurements from flow cytometric sorting. Limnol Oceanogr 39:169–175CrossRefGoogle Scholar
  13. Liu HB, Nolla HA, Campbell L (1997) Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical north pacific ocean. Aquat Microb Ecol 12: 39–47CrossRefGoogle Scholar
  14. Monger BC, Landry MR (1993) Flow cytometric analysis of marine bacteria with Hoechst 33342. Appl Environ Microbiol 59:905–911Google Scholar
  15. Moore LR, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464–467CrossRefGoogle Scholar
  16. Mhling M, Fuller NJ, Somerfield PJ, Post AF, Wilson WH, Scanlan DJ et al. (2006) High resolution genetic diversity studies of marine Synechococcus isolates using rpoC1-based restriction fragment length polymorphism. Aquat Microb Ecol 45:263–275CrossRefGoogle Scholar
  17. Paerl RW, Foster RA, Jenkins BD, Montoya JP, Zehr JP (2008) Phylogenetic diversity of cyanobacterial narB genes from various marine habitats. Environ Microbiol 10:3377–3387CrossRefGoogle Scholar
  18. Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127Google Scholar
  19. Penno S, Lindell D, Post AF (2006) Diversity of Synechococcus and Prochlorococcus populations determined from DNA sequences of the N-regulatory gene ntcA. Environ Microbiol 8:1200–1211CrossRefGoogle Scholar
  20. Rocap G, Distel DL, Waterbury JB, Chisholm SW (2002) Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S–23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol 68:1180–1191CrossRefGoogle Scholar
  21. Rusch DB, Martiny AC, Dupont CL, Halpern AL, Venter JC (2010) Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc Natl Acad Sci 107: 16184–16189CrossRefGoogle Scholar
  22. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al. (2009) Introducing Mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefGoogle Scholar
  23. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana, IL, 144 pGoogle Scholar
  24. Somerville CC, Knight IT, Straube WL, Colwell RR (1989) Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl Environ Microbiol 55:548–554Google Scholar
  25. Toledo G, Palenik B (1997) Synechococcus diversity in the California current as seen by RNA polymerase (rpoC1) gene sequences of isolated strains. Appl Environ Microbiol 63: 4298–4303Google Scholar
  26. West NJ, Lebaron P, Strutton PG, Suzuki MT (2011) A novel clade of Prochlorococcus found in high nutrient low chlorophyll waters in the south and Equatorial Pacific Ocean. ISME J 5:933–944CrossRefGoogle Scholar
  27. Zinser ER, Coe A, Johnson ZI, Martiny AC, Fuller NJ, Scanlan DJ, Chisholm SW (2006) Prochlorococcus ecotype abundances in the North Atlantic Ocean as revealed by an improved quantitative PCR method. Appl Environ Microbiol 72:723–732CrossRefGoogle Scholar
  28. Zwirglmaier K, Heywood JL, Chamberlain K, Woodward EMS, Zubkov MV, Scanlan DJ (2007) Basin-scale distribution patterns lineages in the Atlantic Ocean. Environ Microbiol 9: 1278–1290CrossRefGoogle Scholar
  29. Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D et al. (2008) Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10:147–161Google Scholar

Copyright information

© Korea Ocean Research & Development Institute (KORDI) and the Korean Society of Oceanography (KSO) and Springer Netherlands 2011

Authors and Affiliations

  • Dong Han Choi
    • 1
  • Jae Hoon Noh
    • 2
  • Mi-Seon Hahm
    • 2
  • Charity Mijin Lee
    • 3
  1. 1.Marine Biotechnology Research DepartmentKORDISeoulKorea
  2. 2.Marine Living Resources Research DepartmentKORDISeoulKorea
  3. 3.STP Research DepartmentKORDISeoulKorea

Personalised recommendations