Advertisement

Ocean Science Journal

, 46:179 | Cite as

Improving the description of the suspended particulate matter concentrations in the southern North Sea through assimilating remotely sensed data

  • Ghada Y. El SerafyEmail author
  • Marieke A. Eleveld
  • Meinte Blaas
  • Thijs van Kessel
  • Sandra Gaytan Aguilar
  • Hendrik J. Van der Woerd
Article

Abstract

The integration of remote sensing data of suspended particulate matter (SPM) into numerical models is useful to improve the understanding of the temporal and spatial behaviour of SPM in dynamic shelf seas. In this paper a generic method based on the Ensemble Kalman Filtering (EnKF) for assimilating remote sensing SPM data into a transport model is presented. The EnKF technique is used to assimilate SPM data of the North Sea retrieved from the MERIS sensor, into the computational water quality and sediment transport model, Delft3D-WAQ. The satellite data were processed with the HYDROPT algorithm that provides SPM concentrations and error information per pixel, which enables their use in data assimilation. The uncertainty of the transport model, expressed in the system noise covariance matrix, was quantified by means of a Monte Carlo approach. From a case study covering the first half of 2003, it is demonstrated that the MERIS observations and transport model application are sufficiently robust for a successful generic assimilation. The assimilation results provide a consistent description of the spatial-temporal variability of SPM in the southern North Sea and show a clear decrease of the model bias with respect to independent in-situ observations. This study also identifies some shortcomings in the assimilated results, such as over prediction of surface SPM concentrations in regions experiencing periods of rapid stratification/de-stratification. Overall this feasibility study leads to a range of suggestions for improving and enhancing the model, the observations and the assimilation scheme.

Key words

data assimilation sediment transport remote sensing Kalman filter North Sea 

Reference

  1. Allen JI, Holt JT, Blackford J, Proctor R (2007) Error quantification of a high-resolution coupled hydrodynamic ecosystem coastal-ocean model: Part 2. Chlorophyll-a, nutrients and SPM. J Mar Sys 68(3–4):381–404. doi:10.1016/j.jmarsys.2007.01.005CrossRefGoogle Scholar
  2. Baumert H, Chapalain G, Smaoui H, McManus JP, Yagi H, Regener M, Sündermann J, Szilagy B (2000) Modelling and numerical simulation of turbulence, waves and suspended sediments for pre-operational use in coastal seas. Coast Eng 41(1–3):63–93. doi:10.1016/S0378-3839(00)00027-2CrossRefGoogle Scholar
  3. Chen C, Malanotte-Rizzoli P, Wei J, Beardsley RC, Lai Z, Xue P, Lyu S, Xu Q, Qi J, Cowles G (2009) Comparison and validation of Kalman filters for coastal ocean problems: an experiment with FVCOM. J Geophys Res 114:C05011. doi:10.1029/2007JC004548CrossRefGoogle Scholar
  4. De Boer GJ, Pietrzak JD, Winterwerp JC (2006) On the vertical structure of the Rhine region of freshwater influence. Oce Dyn 56:198–216. doi:10.1007/s10236-005-0042-1CrossRefGoogle Scholar
  5. De Boer GJ, Pietrzak JD, Winterwerp JC (2009) SST observations of upwelling induced by tidal straining in the Rhine ROFI. Cont Shelf Res 29(1):263–277. doi:10.1016/j.csr.2007.06.011CrossRefGoogle Scholar
  6. Delhez EJM, Damm P, de Goede E, de Kok J, Dumas F, Gerritsen H, Jones JE, Ozer J, Pohlmann T, Rasch PS, Skogen M, Proctor R (2004) Variability of shelf-seas hydrodynamic models: lessons from the NOMADS2 project. J Mar Sys 45(1–2):39–53. doi:10.1016/j.jmasys.2003.09.003CrossRefGoogle Scholar
  7. Dobrynin M, Gayer G, Pleskachevsky A, Günther H (2010) Effect of waves and currents on the dynamics and seasonal variations of suspended particulate matter in the North Sea, J Mar Sys 82(1–2): 1–20. doi:10.1016/j.jmarsys.2010.02.012CrossRefGoogle Scholar
  8. Doerffer R, Fischer J (1994) Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods. J Geophys Res 99:7457–7466. doi:10.1029/93JC02523CrossRefGoogle Scholar
  9. Doerffer R, Schiller H (2007) The MERIS case 2 water algorithm. Int J Remote Sens 28:517–535. doi:10.1109/TGRS.2005.848410CrossRefGoogle Scholar
  10. El Serafy GY and Mynett A (2008), Improving the operational forecasting system of the stratified flow in Osaka Bay using an ensemble Kalman filter-based steady state Kalman filter, Water Res Res, 44(w6416):19. pp. doi:10.1029/ 2006wr005412Google Scholar
  11. Eleveld MA, Pasterkamp R, van der Woerd HJ, Pietrzak JD (2008) Remotely sensed seasonality in the spatial distribution of sea-surface suspended particulate matter in the southern North Sea. Estuar Coast Shelf Sci 80(1):103–113. doi: 10.1016/j.ecss.2008.07.015CrossRefGoogle Scholar
  12. Eleveld MA, van der Woerd HJ, Blaas M, El Serafy GY (2007) Using SPM observations derived from MERIS reflectances in a data assimilation scheme for sediment transport in the Dutch coastal zone. In: Proc. Joint 2007 EUMETSAT Meteorological Satellite Conference and the 15th American Meteorological Society. Satellite Meteorology & Oceanography Conference, DarmstadtGoogle Scholar
  13. ESA (2006) MERIS Product handbook. Issue 2.0 (14 Apr 2006). http://envisat.esa.int/handbooks/MERIS/
  14. Evensen G (1994) Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99(C5):10143–10162. doi:10.1029/ 94JC00572CrossRefGoogle Scholar
  15. Evensen G (2003) The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dyn 53:343–367. doi:10.1007/s10236-003-0036-9CrossRefGoogle Scholar
  16. Fettweis M, Nechad B, Van den Eynde D (2007) An estimate of the suspended particulate matter (SPM) transport in the southern North Sea using SeaWiFS images, in situ measurements and numerical model results. Cont Shelf Res 27:1568–1583. doi: 10.1016/j.csr.2007.01.017CrossRefGoogle Scholar
  17. Fettweis MP, Nechad B (2010) Evaluation of in situ and remote sensing sampling methods for SPM concentrations, Belgian continental shelf (southern North Sea). Ocean Dyn. doi:10.1007/s10236-010-0310-6Google Scholar
  18. Fettweis M, Houziaux JS, Four ID, Lancker VV, Baeteman C, Mathys M, Van den Eynde D, Francken F, Wartel S (2009) Long-term influence of maritime access works on the distribution of cohesive sediments: analysis of historical and recent data from the Belgian nearshore area (southern North Sea). Geo-Mar Lett 29(5):321–330. doi:10.1007/s00367-009-0161-7CrossRefGoogle Scholar
  19. Garver SA, Siegel DA (1997) Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea. J Geophys Res 102:18607–18625. doi:10.1029/96JC03243CrossRefGoogle Scholar
  20. Gerritsen HG, Vos RJ, Van der Kaaij Th, Lane A, Boon JG, (2000) Suspended sediment modelling in a shelf sea (North Sea). Coast Eng 41(1–3):317–352. doi:10.1016/S0378-3839(00) 00042-9CrossRefGoogle Scholar
  21. Gordon HR, McCluney WR (1975) Estimation of the depth of sunlight penetration in the sea for remote sensing. Appl Optics 14:413–416. doi:10.1364/AO.14.000413CrossRefGoogle Scholar
  22. Hartog, J, Van de Kreeke J (2003) Analysis of Optical Back Scatter data observed by the Smart Buoy at the stations Noordwijk 10, Noordwijk 5 and Noordwijk 2. Internal report RIKZ, Ministry of Public Works, NetherlandsGoogle Scholar
  23. Jazwinski AH (1970) Stochastic Processes and filtering theory, Academic press IncGoogle Scholar
  24. Keppenne C, Rienecker MM, Kurkowski NP, Adamec DD (2005) Ensemble Kalman filter assimilation of altimeter and temperature data with bias correction and application to seasonal prediction. Nonlinear Proc Geophys 12:491–503CrossRefGoogle Scholar
  25. Klamer JC, Leonards PEG, Lamoree MH, Villerius LA, Akerman JE, Bakker JF (2005) A chemical and toxicological profile of Dutch North Sea surface sediments. Chemosphere 58(11):1579–1587. doi:10.1016/j.chemosphere.2004.11.027CrossRefGoogle Scholar
  26. Kröger S, Parker ER, Metcalfe JD, Greenwood N, Forster RM, Sivyer DB, Pearce DJ (2009) Sensors for observing ecosystem status. Ocean Sci 5:523–535CrossRefGoogle Scholar
  27. Laane RWPM, Sonneveldt HLA, Van der Weyden AJ, Loch JPG, Groeneveld G (1999) Trends in the spatial and temporal distribution of metals (Cd, Cu, Zn and Pb) and organic compounds (PCBs and PAHs) in Dutch coastal zone sediments from 1981 to 1996: A model case study for Cd and PCBs. J Sea Res 41(1–2):1–17. doi:10.1016/S1385-1101(98)00038-0CrossRefGoogle Scholar
  28. Lesser GR, Roelvink JA, van Kester J AT M, Stelling GS (2004) Development and validation of a three-dimensional morphological model. Coast Eng 51(8–9):883–915. doi 10.1016/j.coastaleng. 2004.07.014CrossRefGoogle Scholar
  29. Los FJ, Tatman S, Minns AW (2004) Flyl-nd — A Future Airport in the North Sea? An Integrated Modelling Approach for Marine Ecology. In: Liong, Phoon & Babovic (eds) 6th International Conference on Hydroinformatics. World Scientific 2004Google Scholar
  30. Maritorena S, Fanton d’Andon O, Mangin A, Siegel DA (2010) Merged Satellite Ocean Color Data Products Using a Bio-Optical Model: Characteristics, Benefits and Issues. Remote Sens Environ 114(8):1791–1804. doi:10.1016/j.rse.2010.04.002CrossRefGoogle Scholar
  31. Maritorena S, Siegel DA, Peterson A (2002) Optimization of a semianalytical ocean color model for global-scale applications. Appl Optics 41(15):2705–2714. doi:10.1364/AO.41.002705CrossRefGoogle Scholar
  32. McCandliss RR, Jones SE, Hearn M, Latter R, Jago CF (2002) Dynamics of suspended particles in coastal waters (southern North Sea) during a spring bloom. J Sea Res 47(3–4):285–302. doi:10.1016/S1385-1101(02)00123-5CrossRefGoogle Scholar
  33. McQuatters-Gollop A, Raitsos DE, Edwards M, Pradhan Y, Mee LD, Lavender SJ, Attrill MJ (2007) A long-term chlorophyll data set reveals regime shift in North Sea phytoplankton biomass unconnected to nutrient trends. Limnol Oceanogr 52(2):635–648CrossRefGoogle Scholar
  34. Mobley CD, Sundman LK (2001) Hydrolight 4.2: Users’ guide. Sequoia Scientific, Redmond, WA, USA. http://www.sequoiasci. com/products/Hydrolight.aspx Google Scholar
  35. MUMM (2008) Belgian Marine Data Centre. http://www.mumm. ac.be/datacentre/
  36. Peters SWM, van der Woerd HJA, Eleveld MA (2008) Ovatie-2 Final report. IVM report, AmsterdamGoogle Scholar
  37. Pietrzak JD, de Boer GJ, Eleveld MA (2011) Mechanisms controlling the intra-annual meso-scale variability of SST and SPM in the southern North Sea. Cont Shelf Res (in press)Google Scholar
  38. Postma L, Hervouet J-M (2008) Compatibility between finite volumes and finite elements using solutions of shallow water equations for substance transport. Int J Num Meth Flu 53:1495–1507. doi:10.1002/fld.1373.CrossRefGoogle Scholar
  39. Petersen W, Wehde H, Krasemann H, Colijn F, Schroeder F (2008) FerryBox and MERIS — Assessment of Coastal and Shelf Sea Ecosystems by Combining In-situ and Remote Sensed Data Estuarine. Coast Shelf Sci 77(2):296–307. doi: 10.1016/j.ecss.2007.09.023Google Scholar
  40. Press WH, Vetterling WT, Teukolsky SA, Flannery BR (1992) Numerical recipes in Fortran: The art of scientific computing, 2nd edn. In: Modelling of data. Cambridge University Press, New York, pp 650–700Google Scholar
  41. Rijkswaterstaat (2008) Waterbase. http://live.waterbase.nl
  42. Robinson AR, Lermusiaux PFJ (2002) Data assimilation for modelling and predicting coupled physical-biological interactions in the sea. In: Robinson AR, McCarthy JJ, Rothschild BJ (eds) The Sea, Wiley, New York, pp 475–535Google Scholar
  43. Ruddick K, Ovidio F, Rijkeboer M (2000) Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Appl Optics 39(6):97–912. doi:10.1364/AO.39.000897CrossRefGoogle Scholar
  44. Ruddick KG, De Cauwer V, Park Y-J (2007) Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters. Limnol Oceanogr 51(2):1167–1179CrossRefGoogle Scholar
  45. Simpson JH, Souza AJ (1995) Semidiurnal switching of stratification in the region of freshwater influence of the Rhine. J Geophys Res 100(C4):7037–7044. doi:10.1029/ 95JC00067CrossRefGoogle Scholar
  46. Soulsby R (1997) Dynamics of Marine Sands: A Manual for Practical Applications. Thomas Telford, London, 249 pGoogle Scholar
  47. Stelling GS, van Kester JAThM (1994) On the approximation of horizontal gradients in sigma co-ordinates for bathymetry with steep bottom slopes. Int J Num Meth Flu 18(10):915–935. doi:10.1002/fld.1650181003CrossRefGoogle Scholar
  48. Stronkhorst J, Ariese F, van Hattum B, Postma JF, de Kluijver M, Den Besten PJ, Bergman MJN, Daan R, Murk AJ Vethaak AD (2003) Environmental impact and recovery at two dumping sites for dredged material in the North Sea. Environ, Pollut 124:17–31. 10.1016/S0269-7491(02)00430-XCrossRefGoogle Scholar
  49. Stroud JR, Stein ML, Lesht BM, Schwab DJ, Beletsky D (2010) An Ensemble Kalman Filter and Smoother for Satellite Data Assimilation, J Am Stat Ass. 105(491):978–990. doi:10.1198/jasa.2010.ap07636CrossRefGoogle Scholar
  50. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram, J Geophys Res 106(D7): 7183–7192. doi:10.1029/2000JD900719CrossRefGoogle Scholar
  51. Testut C-E, Brasseur P, Brankart J-M, Verron J (2003) Assimilation of sea-surface temperature and altimetric observations during 1992–1993 into an eddy-permitting primitive equation model of the North Atlantic Ocean. J Mar Syst 40–41:291–316CrossRefGoogle Scholar
  52. Tilstone GH, Peters SWM, van der Woerd HJ, Eleveld MA, Ruddick K, Krasemann H, Schoenfeld W, Martinez-Vicente V, Blondeau-Patissier D, Doerffer R, Høkedal J, Jorgensen PV, Pasterkamp R, Röttgers R, Shutler J, Sørensen K, Astoreca R (2011) Variability in absorption properties and the performance of satellite ocean colour algorithms in North Sea Coastal Waters. J Geophys Res (Submitted)Google Scholar
  53. Van Beusekom JEE, Brockmann UH, Hesse K-J, Hickel W, Poremba K, Tillmann U (1999) The importance of sediments in the transformation and turnover of nutrients and organic matter in the Wadden Sea and German Bight Dtsch Hydrogr Z./Germ. J Hydrogr 51(2/3):245–266CrossRefGoogle Scholar
  54. Van den Eynde D (2004) Interpretation of tracer experiments with fine-grained dredging material at the Belgian Continental Shelf by the use of numerical models, J Mar Sys 48(1–4): 171–189Google Scholar
  55. Van der Wal D, Van Kessel T, Eleveld MA, Vanlede J (2010) Spatial heterogeneity in estuarine mud dynamics. Ocean Dyn 60(3):519–533. doi:10.1007/s10236-010-0271-9CrossRefGoogle Scholar
  56. Van der Woerd HJ, Pasterkamp R (2008) HYDROPT: A fast and flexible method to retrieve chlorophyll-a from multispectral satellite observations of optically complex coastal waters. Remote Sens Environ 112:1795–1807. doi 10.1016/j.rse.2007.09.001CrossRefGoogle Scholar
  57. Van Gils JAG, Ouboter MRL De Rooij MN (1993) Modelling of water and sediment quality in the Scheldt Estuary Neth J Aquat Ecol 27(2–4):257–265CrossRefGoogle Scholar
  58. Van Kessel, T, Winterwerp JC, Van Prooijen, BC, Van Ledden, M, Borst WG (2010) Modelling the seasonal dynamics of SPM with a simple algorithm for the buffering of fines in a sandy seabed. Cont Shelf Res doi:10.1016/j.csr.2010.04.008 (in press)Google Scholar
  59. Vermaat JE, McQuatters-Gollop A, Eleveld MA, Gilbert A (2008) Past, present and future nutrient loads of the North Sea: Causes and consequences. Estuar Coast Shelf Sci 80(1):53–59. doi:10.1016/j.ecss.2008.07.005CrossRefGoogle Scholar
  60. Vos RJ, Ten Brummelhuis PJG, Gerritsen H (2000) Integrated data-modelling approach for suspended sediment transport on a regional scale. Coast Eng 41:177–200. doi:10.1016/S0378-3839(00)00032-6CrossRefGoogle Scholar
  61. Wei J, Malanotte-Rizzoli P (2009) Validation and application of an ensemble Kalman filter in the Selat Pauh of Singapore. Ocean Dyn 60:395–401. doi:10.1007/s10236-009-0253-yCrossRefGoogle Scholar
  62. Weston K, Fernand L, Nicholls J, Marca-Bell A, Mills D, Sivyer D, Trimmer M (2008) Sedimentary and water column processes in the Oyster Ground: A potentially hypoxic region of the North Sea. Mar Environ Res 65:235–249. doi 10.1016/j.marenvres. 2007.11.002CrossRefGoogle Scholar
  63. Wild-Allen K, Lane A, Tett P (2002) Phytoplankton, sediment and optical observations in Netherlands coastal water in spring, J Sea Res 47(3–4):303–315. doi:10.1016/S1385-1101(02)00121CrossRefGoogle Scholar

Copyright information

© Korea Ocean Research & Development Institute (KORDI) and the Korean Society of Oceanography (KSO) and Springer Netherlands 2011

Authors and Affiliations

  • Ghada Y. El Serafy
    • 1
    • 2
    Email author
  • Marieke A. Eleveld
    • 3
  • Meinte Blaas
    • 1
  • Thijs van Kessel
    • 1
  • Sandra Gaytan Aguilar
    • 1
  • Hendrik J. Van der Woerd
    • 3
  1. 1.Marine and Coastal Systems, DeltaresDelftNetherlands
  2. 2.Delft Institute of Applied MathematicsDelft University of TechnologyDelftNetherlands
  3. 3.Institute for Environmental Studies (VU-IVM)Vrije Universiteit AmsterdamAmsterdamNetherlands

Personalised recommendations