Advertisement

Phytoparasitica

, Volume 47, Issue 5, pp 743–758 | Cite as

Nematode soil food webs in maize agro-ecosystems and their implication on plant-parasitic nematodes

  • Samuel Maina
  • Hannah KaruriEmail author
  • Rosa Nyoike Ng’endo
Original Article
  • 14 Downloads

Abstract

Maize is the most important staple food crop consumed in Kenya and Africa. Plant-parasitic nematodes are a major constraint in maize production. On the other hand, free-living nematodes provide key ecological functions such as nutrient mineralization and pest suppression. The aim of this study was to assess the soil food web structure in maize agroecosystems in Kirinyaga County, Kenya in order to understand the potential role of predatory nematodes in suppresion of plant-parastic nematodes. Soil samples were collected from maize fields in Gichugu, Kirinyaga Central, Ndia and Mwea sub-counties in Kirinyaga County. Fifty nematode genera were identified across the sub-counties with Pratylenchus, Cephalobus, Heterocephalobus, Aphelenchus, Labronema and Nygolaimus being the most predominant genera in their respective feeding guilds. The highest enrichment index was recorded in Gichugu sub-county. Nematode functional metabolic footprints based on enrichment index and structure index characterized Mwea as a degraded ecosystem, while Gichugu, Kirinyaga Central and Ndia were structured. The plant-parasitic index was highest in Mwea sub-county although the differences between sub-counties were not statistically significant. Sub-counties which were characterized as structured had a low plant-parasitic index. Canonical correspondence analysis revealed a significant correlation between some soil physical properties, nematode indices and metabolic footprints. The results provide valuable information on soil food web structure and function in maize agro-ecosystems in Kirinyaga County, Kenya and they highlight the potential role of organic amendments in suppression of plant-parasitic nematodes in maize.

Keywords

Metabolic footprints Structure index Zea mays

Notes

Acknowledgements

The authors acknowledge support provided by the Department for International Development under the Climate Impact Research Capacity and Leadership Enhancement programme. We thank farmers from Kirinyaga County who were involved in this study. We are also grateful to Hellen Maina for her assistance in the field and laboratory.

Author contribution

Maina, S. executed the experiments, Karuri, H.W and Ng’endo, R.N. assisted in preparing the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12600_2019_769_MOESM1_ESM.docx (32 kb)
ESM 1 (DOCX 31 kb)

References

  1. Abad, P., Gouzy, J., Aury, J. M., Castagnone-Sereno, P., Etienne, G. J. D., Emeline, P. M., Laetitia, A., Veronique, A., Francois, B., & Vivian, C. (2008). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology, 26, 909–915.PubMedGoogle Scholar
  2. Ardakani, A. S., Mafi, Z. T., Hesar, A. M., & Goltappeh, E. M. (2014). Relationship between soil properties and abundance of Tylenchulus semipenetrans in citrus orchards, Kohgilouyeh va Boyerahmad Province. Journal of Agricultural Science and Technology, 16, 699–1710.Google Scholar
  3. Asmus, G. L., Ferraz, L., & Appezzato-da-Gloria, B. (2000). Anatomical changes in corn (Zea mays L.) roots caused by Meloidogyne javanica. Nematropica, 30, 33–39.Google Scholar
  4. Atandi, J. G., Haukeland, S., Kariuki, G. M., Coyne, D. L., Karanja, E. N., Musyoka, M. W., Fiaboe, K. K. M., Bautze, D., & Adamtey, N. (2017). Organic farming provides improved management of plant-parasitic nematodes in maize and bean cropping systems. Agriculture, Ecosystems and Environment, 247, 265–272.Google Scholar
  5. Bakonyi, G., Nagy, P., Kovacs-Lang, E., Kovacs, E., Barabás, S., Répási, V., & Seres, A. (2007). Soil nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland. Applied Soil Ecology, 37, 31–40.Google Scholar
  6. Berkelmans, R., Ferris, H., Tenuta, M., & Van Bruggen, A. H. C. (2003). Effects of long-term crop management on nematode trophic levels other than plant feeders disappear after 1 year of disruptive soil management. Applied Soil Ecology, 23, 223–235.Google Scholar
  7. Bilgrami, A., Gaugler, R., & Brey, C. (2005). Prey preference and feeding behaviour of the diplogastrid predator Mononchoides gaugleri (Nematoda: Diplogastrida). Nematology, 7, 333–342.Google Scholar
  8. Bongers, T. (1990). The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83, 14–19.PubMedGoogle Scholar
  9. Bongers, T., & Bongers, M. (1998). Functional diversity of nematodes. Applied Soil Ecology, 10, 239–251.Google Scholar
  10. Bongers, T., van der Meulen, H., & Korthals, G. (1997). Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions. Applied Soil Ecology, 6, 195–199.Google Scholar
  11. Bridge, J. (1994). Priorities in plant nematology, a national and regional review. In J. A. Sutherland (Ed.), Crop protection and the Kenya smallholder farmer (pp. 22–24). Nairobi: National Agricultural Research laboratories.Google Scholar
  12. Bridge, J., Price, N. S., & Kofi, P. (1995). Plant-parasitic nematodes of plantain and other crops in Cameroon, West Africa. Fundamental and Applied Nematology, 18, 251–260.Google Scholar
  13. Bulluck, L. R., Barker, K. R., & Ristaino, J. B. (2002). Influences of organic and synthetic soil fertility amendments on nematode trophic groups and community dynamics under tomatoes. Applied Soil Ecology, 21, 233–250.Google Scholar
  14. CIMMYT, & IITA. (2016). Maize in the world. Available at: https://maize.org/projects-cimmyt-and-iita-2/. Accessed on January 2, 2019.
  15. Coyne, D. L., Cortada, L., Dalzell, J. J., Claudius-Cole, A. O., Haukeland, S., Luambano, N., & Talwana, H. (2018). Plant-parasitic nematodes and food security in sub-Saharan Africa. Annual Review of Phytopathology, 56, 381–403.PubMedGoogle Scholar
  16. Coyne, D., Smith, M., & Plowright, R. (2001). Plant-parasitic nematode populations on upland and hydromorphic rice in Côte d’ivoire: Relationship with moisture availability and crop development on a valley slope. Agriculture, Ecosystems and Environment, 84, 31–43.Google Scholar
  17. De Mendiburu, F. (2015). Agricolae: Statistical procedures for agricultural research. R Package Version 1.2–3. Available at: https://cran.r-project.org/package=agricolae. Accessed on April 1, 2019.Google Scholar
  18. De Waele, D., & Jordaan, E. M. (1988). Plant-parasitic nematodes on field crops in South Africa. 1. Maize. Revue de Nematologie, 11, 65–74.Google Scholar
  19. De Waele, D., McDonald, A. H., Jordaan, E. M., Orion, D., Van den Berg, E., & Loots, G. C. (1998). Plant-parasitic nematodes associated with maize and pearl millet in Namibia. African Plant Protection, 4, 113–117.Google Scholar
  20. Desaeger, J., & Rao, M. R. (1999). The root-knot nematode problem in sesbania fallows and scope for managing it in western Kenya. Agroforestry Systems, 47, 273–288.Google Scholar
  21. Ferris, H. (2010). Form and function: Metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology, 46, 97–104.Google Scholar
  22. Ferris, H., & Bongers, T. (2009). Indices developed specifically for analysis of nematode assemblages. In M. J. Wilson & T. Kakouli-Duarte (Eds.), Nematodes as environmental indicators (pp. 124–145). Wallingford: CABI Publishing.Google Scholar
  23. Ferris, H., Bongers, T., & De Goede, R. G. M. (2001). A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology, 18, 13–29.Google Scholar
  24. Ferris, H., Pocasangre, L. E., Serrano, E., Muñoz, J., Garcia, S., Perichi, G., & Martinez, G. (2012a). Diversity and complexity complement apparent competition: Nematode assemblages in banana plantations. Acta Oecologica, 40, 11–18.Google Scholar
  25. Ferris, H., Sánchez-Moreno, S., & Brennan, E. B. (2012b). Structure, functions and interguild relationships of the soil nematode assemblage in organic vegetable production. Applied Soil Ecology, 61, 16–25.Google Scholar
  26. Gao, X. B., & Cheng, H. R. (1992). Observations on infections of Pratylenchus scribneri in maize roots [China]. Nematologia Mediterranea, 20, 141–142.Google Scholar
  27. Gallaher, R.N., Weldon, C., & Futral, J. (1975). An aluminium block digester for plant and soil analysis. Soil Science Society of America, Proceedings, 39, 803-806.Google Scholar
  28. Gebremikael, M. T., Buchan, D., & De Neve, S. (2014). Quantifying the influences of free-living nematodes on soil nitrogen and microbial biomass dynamics in bare and planted microcosms. Soil Biology and Biochemistry, 70, 131–141.Google Scholar
  29. Gee, G. W., & Bauder, J. (1985). Particle size analysis, pp 385–411 in a Kluteed methods of soil analysis part 1 agronomy monograph no 9 (2nd ed.). Madison WI: American Society of Agronomy.Google Scholar
  30. Griffin, G. D., Asay, K. H., & Horton, W. H. (1996). Factors affecting population trends of plant-parasitic nematodes on rangeland grasses. Journal of Nematology, 28, 107–114.PubMedPubMedCentralGoogle Scholar
  31. Hillocks, R. J., Siddiqi, M. R., & Khonga, E. B. (1995). Nematodes associated with subsistence crops in southern Malawi. Afro-Asian Journal of Nematology, 5, 14–19.Google Scholar
  32. Hooper, D. J. (1990). Extraction and processing of plant and soil nematodes. In M. Luc, R. A. Sikora, & J. Bridge (Eds.), Plant-parasitic nematodes in subtropical and tropical agriculture (pp. 45–68). Wallingford: CAB International.Google Scholar
  33. Hooper, D. J., Hallmann, J., & Subbotin, S. A. (2005). Methods for extraction, processing and detection of plant and soil nematodes. In M. Luc, R. A. Sikora, & J. Bridge (Eds.), Plant- parasitic nematodes in subtropical and tropical agriculture (pp. 53–86). Wallingford: CAB International.Google Scholar
  34. Jackson, M. L. (1958). Soil chemical analysis. USA: Prentice hall engelwood Cliffs NJ.Google Scholar
  35. Jaetzold, R., Schmidt, H., Hornetz, B., & Shisanya, C. (2009). Farm management handbook of Kenya, vol II/B1a–natural conditions and farm management information. In Ministry of Agriculture, Nairobi. Kenya and Cooperation with the German Agency for: Technical Cooperation (GTZ).Google Scholar
  36. Jones, J. T., Haegeman, A., Danchin, E. G. J., Gaur, H. S., Helder, J., Jones, M. G. K., Kikuchi, T., Manzanilla-Lopez, R., Palomares-Rius, J. E., Wesemael, W. M. L., & Perry, R. N. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14, 946–961.PubMedPubMedCentralGoogle Scholar
  37. Kandji, S. T., Ogol, C. K. P. O., & Albrecht, A. (2001). Diversity of plant-parasitic nematodes and their relationships with some soil physico-chemical characteristics in improved fallows in western Kenya. Applied Soil Ecology, 18, 143–157.Google Scholar
  38. Karuri, H. W., Olago, D., Neilson, R., Njeri, E., Opere, A., & Ndegwa, P. (2017). Plant-parasitic nematode assemblages associated with sweet potato in Kenya and their relationship with environmental variables. Tropical Plant Pathology, 42, 1–12.Google Scholar
  39. Khan, Z., & Kim, Y. H. (2007). A review on the role of predatory soil nematodes in the biological control of plant-parasitic nematodes. Applied Soil Ecology, 35, 370–379.Google Scholar
  40. Kimenju, J. W., Karanja, N. K., Mutua, G. K., Rimberia, B. M., & Wachira, P. M. (2009). Nematode community structure as influenced by land use and intensity of cultivation. Tropical and Subtropical Agroecosystems, 11, 353–360.Google Scholar
  41. Kimenju, J. W., Waudo, S. W., Mwang’ombe, A. W., Sikora, R. A., & Schuster, R. P. (1998). Distribution of lesion nematodes associated with maize in Kenya and susceptibility of maize cultivars to Pratylenchus zeae. African Crop Science Journal, 6, 367–375.Google Scholar
  42. Kumar, D., & Singh, U. S. (2007). Pathogenicity of spiral nematode, Helicotylenchus indicus and effect on chlorophyll content of maize. Indian Journal of Nematology, 37, 101–102.Google Scholar
  43. Liang, W., Lou, Y., Li, Q., Zhong, S., Zhang, X., & Wang, J. (2009). Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biology and Biochemistry, 41, 883–890.Google Scholar
  44. Macauley, H., & Ramadjita, T. (2015). Cereal crops: Rice, maize, millet, sorghum, wheat. Abdou Diouf International Conference Center, Dakar, Senegal: Feeding Africa.Google Scholar
  45. McDonald, A. H., & Nicol, J. M. (2005). Nematode parasites of cereals. In M. Luc, R. A. Sikora, & J. Bridge (Eds.), Plant-parasitic nematodes in subtropical and tropical agriculture (pp. 131–192). Wallingford: CAB International.Google Scholar
  46. Melakeberhan, H., Maung, Z., Lee, C. L., Poindexter, S., & Stewart, J. (2018). Soil type-driven variable effects on cover-and rotation-crops, nematodes and soil food web in sugar beet fields reveal a roadmap for developing healthy soils. European Journal of Soil Biology, 85, 53–63.Google Scholar
  47. Ministry of Agriculture. (2015). Economic review of agriculture [ERA]. Central planning and monitoring unit. Nairobi: MoA. Ministry of Agriculture.Google Scholar
  48. Namu, J., Karuri, H., Alakonya, A., Nyaga, J., & Njeri, E. (2018). Distribution of parasitic nematodes in Kenyan rice fields and their relation to edaphic factors, rainfall and temperature. Tropical Plant Pathology, 43, 128–137.Google Scholar
  49. Nicol, J. M., Turner, S. J., Coyne, D. L., Den-Nijs, L., Hockland, S., & Maafi, Z. T. (2011). Current nematode threats to world agriculture. In G. Gheysen & C. Fenoll (Eds.), Genomics and molecular genetics of plant-nematode interactions (pp. 21–43). Netherlands: Springer.Google Scholar
  50. Nielsen, U. N., Ayres, E., Wall, D. H., Li, G., Bardgett, R. D., Wu, T., & Garey, J. R. (2014). Global scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Global Ecology and Biogeography, 23, 968–978.Google Scholar
  51. Pan, F., Han, X., McLaughlin, N. B., Li, C., Zhao, D., Zhan, L., & Xu, Y. (2015). Effect of long-term fertilization on free-living nematode community structure in Mollisols. Journal of Soil Science and Plant Nutrition, 15, 129–141.Google Scholar
  52. Patel, N. B., Patel, D. J., & Patel, A. D. (2002). Effect of Pratylenchus zeae on maize. Indian Phytopathology, 55, 333–334.Google Scholar
  53. Pokharel, R. R. (2009). Damage of root-knot nematode (Meloidogyne graminicola) to rice in fields with different soil types. Nematologia Mediterranea, 37, 203–217.Google Scholar
  54. Popovici, I., & Ciobanu, M. (2000). Diversity and distribution of nematode communities in grasslands from Romania in relation to vegetation and soil characteristics. Applied Soil Ecology, 14, 27–36.Google Scholar
  55. R Development Core Team. (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: https://www.r-project.org. Accessed on April 1, 2019.
  56. Sánchez-Moreno, S., & Ferris, H. (2018). Nematode ecology and soil health. In: Sikora, R. a., Coyne, D., Hallmann. J., & Timper. P. (Eds.), Plant-Parasitic Nematodes in Subtropical and Tropical Agriculture. CAB International, Wallingford. pp. 62–83.Google Scholar
  57. Sánchez-Moreno, S., Cano, M., López-Pérez, A., & Benayas, J. M. R. (2018). Microfaunal soil food webs in Mediterranean semi-arid agroecosystems. Does organic management improve soil health? Applied Soil Ecology, 125, 138–147.Google Scholar
  58. Sieriebriennikov, B., Ferris, H., & De Goede, R. G. M. (2014). NINJA: An automated calculation system for nematode-based biological monitoring. European Journal of Soil Biology, 61, 90–93.Google Scholar
  59. Singh, S., Singh, B., & Singh, A. P. (2015). Nematodes: A threat to sustainability of agriculture. Procedia Environmental Sciences, 29, 215–216.Google Scholar
  60. Smale, M., Byerlee, D., & Jayne, T. (2011). “Maize Revolutions in Sub-Saharan Africa,” Miscellaneous Publications 113651, Michigan State University, Department of Agricultural, Food, and Resource Economics.Google Scholar
  61. Smith, J., & Doran, J. (1996). Measurement and use of electrical conductivity for soil quality analysis pp. In 169–185 in Doran JW. Soil Science Society of America: Jones AJ eds. Methods for assessing soil quality. Soil science society of America special publication Madison WI.Google Scholar
  62. Stavi, I., Bel, G., & Zaady, E. (2016). Soil functions and ecosystem services in conventional, conservation, and integrated agricultural systems. A review. Agronomy for Sustainable Development, 36, 32.Google Scholar
  63. Steel, H., & Ferris, H. (2016). Soil nematode assemblages indicate the potential for biological regulation of pest species. Acta Oecologica, 73, 87–96.Google Scholar
  64. Talwana, H., Sibanda, Z., Wanjohi, W., Kimenju, W., Luambano-Nyoni, N., Massawe, C., Manzanilla-López, R. H., Keith, G. D., Hunt, D. J., Sikora, R. A., Coyne, D. L., Gowen, S. R., & Kelly, B. R. (2015). Agricultural nematology in east and southern Africa: Problems, management strategies and stakeholder linkages. Pest Management Science, 72, 226–245.PubMedGoogle Scholar
  65. Thoden, T. C., Korthals, G. W., & Termorshuizen, A. J. (2011). Organic amendments and their influences on plant-parasitic and free-living nematodes: A promising method for nematode management? Nematology, 13, 133–153.Google Scholar
  66. Van den Oever, R., Van den Berg, E., & Chirruco, J. A. (1998). Plant-parasitic nematodes associated with crops grown by smallholders in Mozambique. Fundamental and Applied Nematology, 21, 645–654.Google Scholar
  67. Waceke, J. W., Arim, O. J., Waudo, S. W., & Kimenju, J. W. (2013). Plant-parasitic nematodes of maize (Zea mays L.) in low input agriculture in Kenya. African Crop Science Journal, 8, 443–450.Google Scholar
  68. Whitehead, A. G. (1969). The distribution of root-knot nematodes (Meloidogyne spp.) in tropical Africa. Nematologica, 15, 315–333.Google Scholar
  69. Wiesel, L., Daniell, T. J., King, D., & Neilson, R. (2015). Determination of the optimal soil sample size to accurately characterise nematode communities in soil. Soil Biology and Biochemistry, 80, 89–91.Google Scholar
  70. Yeates, G. W., Bongers, T. D., De Goede, R. G. M., Freckman, D. W., & Georgieva, S. S. (1993a). Feeding habits in soil nematode families and genera - an outline for soil ecologists. Journal of Nematology, 25, 315–331.PubMedPubMedCentralGoogle Scholar
  71. Yeates, G. W. (2007). Abundance, diversity, and resilience of nematode assemblages in forest soils. Canadian Journal of Forest Research, 37, 216–225.Google Scholar
  72. Yeates, G. W., Ferris, H., Moens, T., & Van der Putten, W. H. (2009). The role of nematodes in ecosystems. In M. J. Wilson & T. Kakouli-Duarte (Eds.), Nematodes as environmental indicators (pp. 1–44). Wallingford: CABI Publishing.Google Scholar
  73. Yeates, G. W., Wardle, D. A., & Watson, R. N. (1993b). Relationships between nematodes, soil microbial biomass and weed-management strategies in maize and asparagus cropping systems. Soil Biology and Biochemistry, 25, 869–876.Google Scholar
  74. Zhang, X., Ferris, H., Mitchell, J., & Liang, W. (2017). Ecosystem services of the soil food web after long-term application of agricultural management practices. Soil Biology and Biochemistry, 111, 36–43.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of EmbuEmbuKenya

Personalised recommendations