The effect of five insecticides on the predators Coccinella septempunctata and Hippodamia variegata

  • Panagiotis J. SkourasEmail author
  • George J. Stathas
  • Vasilios Demopoulos
  • Giannis Louloudakis
  • John T. Margaritopoulos


The coccinellids Coccinella septempunctata L. and Hippodamia variegata (Goeze) are two native predators in Greece as well as very important biological control agents against aphids for many crops. The conservation of these predators in IPM approaches requires knowledge of the toxicity and the effects of insecticides on their biological characters. In the present study, the effects of five insecticides (kaolin, mineral oil, insecticidal soap, pymetrozine and imidacloprid) on the mortality, developmental time and consumption of fourth instar larvae of C. septempunctata and H. variegata were studied under laboratory conditions. Kaolin, insecticidal soap and pymetrozine were harmless to the last instar larvae of C. septempunctata and H. variegata whereas imidacloprid was moderate toxic. We concluded that kaolin, insecticidal soap and pymetrozine could be incorporated into IPM programs in combination with the two predator species studied.


IPM Coccinella septempunctata Hippodamia variegata Kaolin Mineral oil Insecticidal soap Pymetrozine Imidacloprid 



The author would like to thank Katerina Zouvelou and Chara Tsekoura for their assistance with the laboratory work.


This research is implemented through IKY scholarships programme and co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the action entitled “Reinforcement of Postdoctoral Researchers”, in the framework of the Operational Programme “Human Resources Development Program, Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) 2014–2020.

Compliance with ethical standards

Disclosure statement

No potential conflict of interest was reported by the authors.


  1. Barbosa, P. R. R., Oliveira, M. D., Barros, E. M., Michaud, J. P., & Torres, J. B. (2018). Differential impacts of six insecticides on a mealybug and its coccinellid predator. Ecotoxicology and Environmental Safety, 147, 963–971.CrossRefGoogle Scholar
  2. Bass, C., Denholm, I., Williamson, M. S., & Nauen, R. (2015). The global status of insect resistance to neonicotinoid insecticides. Pesticide Biochemistry and Physiology, 121, 78–87.CrossRefGoogle Scholar
  3. Bengochea, P., Hernando, S., Saelices, R., Adán, A., Budia, F., González-Núñez, M., Viñuela, E., & Medina, P. (2010). Side effects of kaolin on natural enemies found on olive crops. IOBC/WPRS Bulletin, 55, 61–67.Google Scholar
  4. Bengochea, P., Amor, F., Saelices, R., Hernando, S., Budia, F., Adán, A., & Medina, P. (2013). Kaolin and copper-based products applications: ecotoxicology on four natural enemies. Chemosphere, 91, 1189–1195.CrossRefGoogle Scholar
  5. Bestete, L. R., Torres, J. B., & Pereira, F. F. (2018). Harmonious interaction of kaolin and two insect predator species in plant protection. International Journal of Pest Management, 64, 166–172.CrossRefGoogle Scholar
  6. Bianchi, F. J. J. A., & Van Der Werf, W. (2004). Model evaluation of the function of prey in non-crop habitats for biological control by ladybeetles in agricultural landscapes. Ecological Modelling, 171, 177–193.CrossRefGoogle Scholar
  7. Blackman, R. L. (1971). Variation in the photoperiodic response within natural populations of Myzus persicae (Sulz). Bulletin of Entomological Research, 60, 533–546.CrossRefGoogle Scholar
  8. Blackman, R. L., & Eastop, V. F. (2000). Aphids on the World’s crops: An identification and information guide (2nd ed.). New York: John Wiley and Sons.Google Scholar
  9. Cabral, S., Garcia, P., & Soares, A. O. (2008). Effects of pirimicarb, buprofezin and pymetrozine on survival, development and reproduction of Coccinella undecimpunctata (Coleoptera: Coccinellidae). Biocontrol Science and Technology, 18, 307–318.CrossRefGoogle Scholar
  10. Cabral, S., Soares, A. O., & Garcia, P. (2011). Voracity of Coccinella undecimpunctata: Effects of insecticides when foraging in a prey/plant system. Journal of Pest Science, 84, 373–379.CrossRefGoogle Scholar
  11. Deligeorgidis, P. N., Ipsilandis, C. G., Vaiopoulou, M., Kaltsoudas, G., & Sidiropoulos, G. (2005). Predatory effect of Coccinella septempunctata on Thrips tabaci and Trialeurodes vaporariorum. Journal of Applied Entomology, 129, 246–249.CrossRefGoogle Scholar
  12. Edelson, J., Duthie, J., & Roberts, W. (2002). Toxicity of biorational insecticides: activity against the green peach aphid, Myzus persicae (Sulzer). Pest Management Science, 58, 255–260.CrossRefGoogle Scholar
  13. Foster, S. P., Devine, G., & Devonshire, A. (2007). Insecticide resistance. In H. F. van Emden & R. Harrington (Eds.), Aphids as crop pests (pp. 261–286). Wallingford: CAB International.CrossRefGoogle Scholar
  14. Grafton-Cardwell, E. E., & Gu, P. (2003). Conserving vedalia beetle, Rodolia cardinalis (Mulsant) (Coleoptera: Coccinellidae), in citrus: a continuing challenge as new insecticides gain registration. Journal of Economic Entomology, 96, 1388–1398.CrossRefGoogle Scholar
  15. Hall, D. G., & Richardson, M. L. (2013). Toxicity of insecticidal soaps to the Asian citrus psyllid and two of its natural enemies. Journal of Applied Entomology, 137, 347–354.CrossRefGoogle Scholar
  16. Hassan, S. A. (1994). Activities of the IOBC/WPRS working group 'Pesticides and beneficial organisms'. IOBC/WPRS Bulletin, 17, 1–5.Google Scholar
  17. Hodek, I., & Honek, A. (1996). Ecology of Coccinellidae. Dordrecht, the Netherlands: Kluwer Academic Publishers.Google Scholar
  18. Hosseini, A., Hosseini, M., Michaud, J. P., Modarres Awal, M., & Ghadamyari, M. (2019). Life history responses of Hippodamia variegata (Coleoptera: Coccinellidae) to changes in the nutritional content of its prey, Aphis gossypii (Hemiptera: Aphididae), mediated by nitrogen fertilization. Biological Control, 130, 27–33.CrossRefGoogle Scholar
  19. , M., Mustafa, I., Malik, M. F., Zulifqar, S., & Abbas, Z. (2017). Effect of imidacloprid and bifenthrin on predation efficiency of Coccinella septempunctata (Coleoptera: Coccinellidae) under laboratory conditions. Asian Journal of Agriculture and Biology, 5, 126–132.Google Scholar
  20. Ioannidis, P. (2000). Resistance of Aphis fabae and Myzus persicae to insecticides in sugarbeets. In: Proceedings of the 63rd Congress of the International Institute for Beet Research, (pp. 497–504). Interlaken, February 2000. International Institute for Beet Research, Brussels.Google Scholar
  21. Jacas Miret, J. A., & Garcia-Marí, F. (2001). Side-effects of pesticides on selected natural enemies occurring in citrus in Spain. IOBC/WPRS Bulletin, 24, 103–112.Google Scholar
  22. Jalali, M. A., Leeuwen, T. V., Tirry, L., & De Clercq, P. (2009). Toxicity of selected insecticides to the two-spot ladybird Adalia bipunctata. Phytoparasitica, 37, 323–326.CrossRefGoogle Scholar
  23. Jansen, J. P., Defrance, T., & Warnier, A. M. (2011). Side effects of flonicamide and pymetrozine on five aphid natural enemy species. Biocontrol, 56, 759–770.CrossRefGoogle Scholar
  24. Karagounis, C., Kourdoumbalos, A. K., Margaritopoulos, J. T., Nanos, G. D., & Tsitsipis, J. A. (2006). Organic farming-compatible insecticides against the aphid Myzus persicae (Sulzer) in peach orchards. Journal of Applied Entomology, 130, 150–154.CrossRefGoogle Scholar
  25. Kati, A. N., Mandrioli, M., Skouras, P. J., Malloch, G. L., Voudouris, C. C., Venturelli, M., Manicardi, G. C., Tsitsipis, J. A., Fenton, B., & Margaritopoulos, J. T. (2014). Recent changes in the distribution of carboxylesterase genes and associated chromosomal rearrangements in Greek populations of the tobacco aphid Myzus persicae nicotianae. Biological Journal of the Linnean Society, 113, 455–470.CrossRefGoogle Scholar
  26. Katsarou, I., Margaritopoulos, J. T., Tsitsipis, J. A., Perdikis, D. C., & Zarpas, K. D. (2005). Effect of temperature on development, growth and feeding of Coccinella septempunctata and Hippodamia convergens reared on the tobacco aphid, Myzus persicae nicotianae. Biocontrol, 50, 565–588.CrossRefGoogle Scholar
  27. Kavallieratos, N. G., Athanassiou, C. G., Tomanović, Ž., Papadopoulos, G. D., & Vayias, B. J. (2004). Seasonal abundance and effect of predators (Coleoptera, Coccinellidae) and parasitoids (Hymenoptera: Braconidae, Aphidiinae) on Myzus persicae (Hemiptera, Aphidoidea) densities on tobacco: a two-year study from Central Greece. Biologia - Section Zoology, 59, 613–619.Google Scholar
  28. Kraiss, H., & Cullen, E. M. (2008). Efficacy and nontarget effects of reduced-risk insecticides on Aphis glycines (Hemiptera: Aphidiidae) and its biological control agent Harmonia axyridis (Coleoptera: Coccinellidae). Journal of Economic Entomology, 101, 391–398.CrossRefGoogle Scholar
  29. Larentzaki, E., Shelton, A. M., & Plate, J. (2008). Effect of kaolin particle film on Thrips tabaci (Thysanoptera: Thripidae), oviposition, feeding and development on onions: a lab and field case study. Crop Protection, 27, 727–734.CrossRefGoogle Scholar
  30. Liu, T., & Stansly, P. A. (1996). Toxicological effects of selected insecticides on Nephaspis oculatus (Col., Coccinellidae), a predator of Bemisia argentifolii (Hom., Aleyrodidae). Journal of Applied Entomology, 120, 369–373.CrossRefGoogle Scholar
  31. Lucas, E., Giroux, S., Demougeot, S., Duchesne, R. M., & Coderre, D. (2004). Compatibility of a natural enemy, Coleomegilla maculata lengi (Col., Coccinellidae) and four insecticides used against the Colorado potato beetle (Col., Chrysomelidae). Journal of Applied Entomology, 128, 233–239.CrossRefGoogle Scholar
  32. Margaritopoulos, J. T., Skouras, P. J., Nikolaidou, P., Manolikaki, J., Maritsa, K., Tsamandani, K., Kanavaki, O. M., Bacandritsos, N., Zarpas, K. D., & Tsitsipis, J. A. (2007). Insecticide resistance status of Myzus persicae (Hemiptera: Aphididae) populations from peach and tobacco in mainland Greece. Pest Management Science, 63, 821–829.CrossRefGoogle Scholar
  33. Margaritopoulos, J. T., Tsamandani, K., Kanavaki, O. M., Katis, N. I., & Tsitsipis, J. A. (2010). Efficacy of pymetrozine against Myzus persicae and in reducing potato virus Y transmission on tobacco plants. Journal of Applied Entomology, 134, 323–332.CrossRefGoogle Scholar
  34. Nauen, R. (1995). Behaviour modifying effects of low systemic concentrations of imidacloprid on Myzus persicae with special reference to an antifeeding response. Pesticide Science, 44, 145–153.CrossRefGoogle Scholar
  35. Papachristos, D. P., & Milonas, P. G. (2008). Adverse effects of soil applied insecticides on the predatory coccinellid Hippodamia undecimnotata (Coleoptera: Coccinellidae). Biological Control, 47, 77–81.CrossRefGoogle Scholar
  36. Pascual, S., Cobos, G., Seris, E., & González-Núñez, M. (2010). Effects of processed kaolin on pests and non-target arthropods in a Spanish olive grove. Journal of Pest Science, 83, 121–133.CrossRefGoogle Scholar
  37. Perring, T. M., Gruenhagen, N. M., & Farra, C. A. (1999). Management of plant viral diseases through chemical control of insect vectors. Annual Review of Entomology, 44, 457–481.CrossRefGoogle Scholar
  38. Porcel, M., Cotes, B., & Campos, M. (2011). Biological and behavioural effects of kaolin particle film on larvae and adults of Chrysoperla carnea (Neuroptera: Chrysopidae). Biological Control, 59, 98–105.CrossRefGoogle Scholar
  39. Qi, B., Gordon, G., & Gimme, W. (2001). Effects of neem-fed prey on the predacious insects Harmonia conformis (Boisduval) (Coleoptera: Coccinellidae) and Mallada signatus (Schneider) (Neuroptera: Chrysopidae). Biological Control, 22, 185–190.CrossRefGoogle Scholar
  40. Silva, C. A. D., & Ramalho, F. S. (2013). Kaolin spraying protects cotton plants against damages by boll weevil Anthonomus grandis Boheman (Coleoptera: Curculionidae). Journal of Pest Science, 86, 563–569.CrossRefGoogle Scholar
  41. Singh, S. R., Walters, K. F. A., Port, G. R., & Northing, P. (2004). Consumption rates and predatory activity of adult and fourth instar larvae of the seven spot ladybird, Coccinella septempunctata (L.), following contact with dimethoate residue and contaminated prey in laboratory arenas. Biological Control, 30, 127–133.CrossRefGoogle Scholar
  42. Skouras, P. J., & Stathas, G. J. (2015). Development, growth and body weight of Hippodamia variegata fed Aphis fabae in the laboratory. Bulletin of Insectology, 68, 193–198.Google Scholar
  43. Skouras, P. J., Margaritopoulos, J. T., Zarpas, K. D., & Tsitsipis, J. A. (2015). Development, growth, feeding and reproduction of Ceratomegilla undecimnotata, Hippodamia variegata and Coccinella septempunctata fed on the tobacco aphid, Myzus persicae nicotianae. Phytoparasitica, 43, 159–169.CrossRefGoogle Scholar
  44. Skouras, P. J., Stathas, G. J., Voudouris, C. C., Darras, A. I., Tsitsipis, J. A., & Margaritopoulos, J. T. (2017). Effect of synthetic insecticides on the larvae of Coccinella septempunctata from Greek populations. Phytoparasitica, 45, 165–173.CrossRefGoogle Scholar
  45. Smaili, M. C., El Ghadraoui, L., Gaboun, F., Benkirane, R., & Blenzar, A. (2014). Impact of some alternative methods to chemical control in controlling aphids (Hemiptera: Sternorrhyncha) and their side effects on natural enemies on young Moroccan citrus groves. Phytoparasitica, 42, 421–436.Google Scholar
  46. Smith, S. F., & Krischik, V. A. (2000). Effects of biorational pesticides on four coccinellid species (Coleoptera: Coccinellidae) having potential as biological control agents in interiorscapes. Journal of Economic Entomology, 93, 732–736.CrossRefGoogle Scholar
  47. SPSS, Inc. (2009). SPSS Base 18.0 for windows User's guide. SPSS Inc., Chicago, Illinois, USA.Google Scholar
  48. Stark, J. D., Vargas, R. I., & Banks, J. E. (2007). Incorporating ecologically relevant measures of pesticide effect for estimating the compatibility of pesticides and biocontrol agents. Journal of Economic Entomology, 100, 1027–1032.CrossRefGoogle Scholar
  49. Tillman, P. G., & Mulrooney, J. E. (2000). Effect of selected insecticides on the natural enemies Colleomegilla maculata and Hippodamia convergens (Coleoptera: Coccinellidae), Geocoris punctipes (Hemiptera: Lygaeidae), and Bracon mellitor, Cardiochiles nigriceps, and Cotesia marginiventris (Hymenoptera: Braconidae) in cotton. Journal of Economic Entomology, 93, 1638–1643.CrossRefGoogle Scholar
  50. Voudouris, C. C., Kati, A. N., Sadikoglou, E., Williamson, M., Skouras, P. J., Dimotsiou, O., Georgiou, S., Fenton, B., Skavdis, G., & Margaritopoulos, J. T. (2016). Insecticide resistance status of Myzus persicae in Greece: long-term surveys and new diagnostics for resistance mechanisms. Pest Management Science, 72, 671–683.CrossRefGoogle Scholar
  51. Voudouris, C. C., Williamson, M. S., Skouras, P. J., Kati, A. N., Sahinoglou, A. J., & Margaritopoulos, J. T. (2017). Evolution of imidacloprid resistance in Myzus persicae in Greece and susceptibility data for spirotetramat. Pest Management Science, 73, 1804–1812.CrossRefGoogle Scholar
  52. Xiao, D., Zhao, J., Guo, X., Chen, H., Qu, M., Zhai, W., Desneux, N., Biondi, A., Zhang, F., & Wang, S. (2016). Sublethal effects of imidacloprid on the predatory seven-spot ladybird beetle Coccinella septempunctata. Ecotoxicology, 25, 1782–1793.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratory of Agricultural Entomology and Zoology, Department of Agricultural TechnologyTechnological Educational Institute of PeloponneseKalamataGreece
  2. 2.Laboratory of Plant Protection Products, Department of Agricultural TechnologyTechnological Educational Institute of PeloponneseKalamataGreece
  3. 3.Department of Plant ProtectionInstitute of Industrial and Fodder Crops, Hellenic Agricultural Organization “DEMETER” – NAGREFVolosGreece

Personalised recommendations