Advertisement

Phytoparasitica

, Volume 47, Issue 2, pp 293–300 | Cite as

Evidence for increased efficiency of virus transmission by populations of Mediterranean species of Bemisia tabaci with high Hamiltonella prevalence

  • Vinicius Henrique Bello
  • Luís Fernando Maranho Watanabe
  • Beatriz Rosa Santos
  • Julio Massaharu Marubayashi
  • Valdir Atsushi Yuki
  • Bruno Rossitto De Marchi
  • Marcelo Agenor Pavan
  • Renate Krause-SakateEmail author
Article
  • 53 Downloads

Abstract

Bemisia tabaci is an important agriculture pests and vector of viruses. The MEAM1 species of B. tabaci, first described in Brazil in the 90s is now the most prevalent species and primary cause of the emergence of begomoviruses in tomatoes. The Mediterranean species (MED) was recently detected in Brazil and is a new concern for Brazilian agriculture. The potential impact of this species as a vector of economically important virus in Brazil is unknown. We therefore evaluated the ability of MED to transmit four whitefly transmitted viruses prevalent in Brazil, Cowpea mild mottle virus (CpMMV, carlavirus), Bean golden mosaic virus (BGMV, begomovirus) infecting beans; and the Tomato severe rugose virus (ToSRV, begomovirus), Tomato chlorosis virus (ToCV, crinivirus) infecting tomatoes. The colony of MED harbouring the secondary endosymbionts was tested: 14% positive for Hamiltonella and 29% positive for Rickettsia. After six months being maintained on cotton plants, this colony changed the frequency of endosymbionts (97% of Hamiltonella and 1% of Rickettsia) and was denominated as MEDH. Additionally, a colony of MEAM1 (98% positive for Hamiltonella and 91% positive for Rickettsia) was also tested. The viruses were efficiently transmitted by MED, but transmission efficiency varied among the MED and MEDH, being CpMMV, BGMV and ToCV better transmitted by MEDH. Moreover, transmission efficiency of ToSRV and ToCV by MEDH was even significantly better than MEAM1. We conclude that specimens from B. tabaci MED are good vectors of virus infecting tomato and beans in Brazil and populations with Hamiltonella prevalence increased the virus transmission.

Keywords

Whitefly Endosymbionts Hamiltonella Begomovirus Carlavirus Crinivirus 

Notes

Acknowledgments

This study was financed in party by the Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. BRM and BRS received a CNPq/Brazil scholarship. Financial support was received from FAPESP 2017/21588-7, 2017/50222, -2014/047289-4 and CNPq479101/2013-2. RKS and MAP received CNPq fellowships.

Compliance with ethical standards

The authors declare that the work is in compliance with ethical standards.

Conflict of interest

The authors declare no conflict of interests.

Research involving human participants and/or animals

The authors declare that the manuscript does not contain research involving Human Participants and/or Animals.

References

  1. Barbosa, L. F., Marubayashi, J. M., De Marchi, B. R., Yuki, V. A., Pavan, M. A., Moriones, E., et al. (2014). Indigenous American species of the Bemisia tabaci complex are still widespread in the Americas. Pest Management Science, 70(10), 1440–1445.CrossRefGoogle Scholar
  2. Barbosa, L. B., Yuki, V. A., Marubayashi, J. M., De Marchi, B. R., Perini, F. L., Pavan, M. A., et al. (2015). First report of Bemisia tabaci Mediterranean (Q biotype) species in Brazil. Pest Management Science, 71(4), 501–504.  https://doi.org/10.1002/ps.3909.CrossRefGoogle Scholar
  3. Barreto, S. S., Hallwass, M., Aquino, O. M., & Inoue-Nagata, A. K. (2013). A study of weeds as potential inoculum sources for a tomato-infecting Begomovirus in Central Brazil. Phytopathology, 103(5), 436–444.  https://doi.org/10.1094/PHYTO-07-12-0174-R.CrossRefGoogle Scholar
  4. Bosco, D., Loria, A., Sartor, C., & Cenis, J. L. (2006). PCR-RFLP identification ofBemisia tabaci biotypes in the Mediterranean Basin. Phytoparasitica, 34(3), 243–251.CrossRefGoogle Scholar
  5. Boykin, L. M., & De Barro, P. J. (2014). A practical guide to identifying members of the Bemisia tabaci species complex: And other morphologically identical species. Frontiers in Ecology and Evolution, 2.  https://doi.org/10.3389/fevo.2014.00045.
  6. Costa, A. S., Oliveira, A. R., & Silva, D. M. (1977). Transmissao mecanica do agente causal do mosaico dourado do tomateiro [Lycopersicum esculentum]. Summa Phytopathologica (Brasil), 3(3), 194–200.Google Scholar
  7. Czosnek, H., & Ghanim, M. (2016). Management of insect pests to agriculture: Lessons learned from deciphering their genome, transcriptome and proteome. Management of Insect Pests to Agriculture: Lessons Learned from Deciphering their Genome, Transcriptome and Proteome, 1–290.  https://doi.org/10.1007/978-3-319-24049-7.
  8. De Barro, P. J., Liu, S.-S., Boykin, L. M., & Dinsdale, A. B. (2011). Bemisia tabaci : A statement of species status. Annual Review of Entomology, 56(1), 1–19.  https://doi.org/10.1146/annurev-ento-112408-085504.CrossRefGoogle Scholar
  9. De Marchi, B. R., Marubayashi, J. M., Favara, G. M., Yuki, V. A., Watanabe, L. F. M., Barbosa, L. F., et al. (2017). Comparative transmission of five viruses by Bemisia tabaci NW2 and MEAM1. Tropical Plant Pathology, 1, 495–499.  https://doi.org/10.1007/s40858-017-0186-9.CrossRefGoogle Scholar
  10. Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19–21.CrossRefGoogle Scholar
  11. Dinsdale, A., Cook, L., Riginos, C., Buckley, Y. M., De Barro, P., & Barro, P. D. (2010). Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Annals of the Entomological Society of America, 103(2), 196–208.  https://doi.org/10.1603/AN09061.CrossRefGoogle Scholar
  12. Dovas, C. I., Katis, N. I., & Avgelis, A. D. (2002). Multiplex detection of Criniviruses associated with epidemics of a yellowing disease of tomato in Greece. Plant Disease, 86(12), 1345–1349.  https://doi.org/10.1094/PDIS.2002.86.12.1345.CrossRefGoogle Scholar
  13. Faria, J. C., Aragão, F. J. L., Souza, T. L. P. O., Quintela, E. D., Kitajima, E. W., & Ribeiro, S. G. (2016). Golden mosaic of common beans in Brazil : Management with a transgenic approach. APS Journal, 1–14.  https://doi.org/10.1094/APSFeature-2016-10.Plant.
  14. Ghanim, M. (2014). A review of the mechanisms and components that determine the transmission efficiency of tomato yellow leaf curl virus (Geminiviridae; Begomovirus) by its whitefly vector. Virus Research, 186, 47–54.  https://doi.org/10.1016/j.virusres.2014.01.022.CrossRefGoogle Scholar
  15. Ghanim, M., & Kontsedalov, S. (2009). Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. Pest Management Science, 65(9), 939–942.  https://doi.org/10.1002/ps.1795.CrossRefGoogle Scholar
  16. Ghosh, S., Bouvaine, S., Richardson, S. C. W., Ghanim, M., & Maruthi, M. N. (2018). Fitness costs associated with infections of secondary endosymbionts in the cassava whitefly species Bemisia tabaci. Journal of Pest Science, 91(1), 17–28.  https://doi.org/10.1007/s10340-017-0910-8.CrossRefGoogle Scholar
  17. Gilbertson, R. L., Batuman, O., Webster, C. G., & Adkins, S. (2015). Role of the insect Supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annual Review of Virology, 2(1), 67–93.  https://doi.org/10.1146/annurev-virology-031413-085410.CrossRefGoogle Scholar
  18. Gottlieb, Y., Zchori-Fein, E., Mozes-Daube, N., Kontsedalov, S., Skaljac, M., Brumin, M., Sobol, I., Czosnek, H., Vavre, F., Fleury, F., & Ghanim, M. (2010). The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. Journal of Virology, 84(18), 9310–9317.  https://doi.org/10.1128/JVI.00423-10.CrossRefGoogle Scholar
  19. Gueguen, G., Vavre, F., Gnankine, O., Peterschmitt, M., Charif, D., Chiel, E., et al. (2010). Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Molecular Ecology, 19(19), 4365–4376.CrossRefGoogle Scholar
  20. Hadjistylli, M., Roderick, G.K., & Brown, J.K. (2016). Global population structure of a worldwide Pest and virus vector : Genetic diversity and population history of the Bemisia tabaci sibling species group.  https://doi.org/10.5061/dryad.h7s57.
  21. Horowitz, A. R., Kontsedalov, S., Khasdan, V., & Ishaaya, I. (2005). Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology, 58(4), 216–225.  https://doi.org/10.1002/arch.20044.CrossRefGoogle Scholar
  22. Inoue-Nagata, A. K., Lima, M. F., & Gilbertson, R. L. (2016). A review of geminivirus diseases in vegetables and other crops in Brazil: Current status and approaches for management. Horticultura Brasileira, 34(1), 8–18.  https://doi.org/10.1590/S0102-053620160000100002.CrossRefGoogle Scholar
  23. Kliot, A., Cilia, M., Czosnek, H., & Ghanim, M. (2014). Implication of the bacterial endosymbiont rickettsia spp. in interactions of the whitefly Bemisia tabaci with tomato yellow leaf curl virus. Journal of Virology, 88(10), 5652–5660.  https://doi.org/10.1128/JVI.00071-14.CrossRefGoogle Scholar
  24. Lourencao, A. L., & Nagai, H. (1994). Surtos populacionais de Bemisia tabaci no Estado de Sao Paulo. Bragantia, 53(1), 53–59.  https://doi.org/10.1590/S0006-87051994000100006.CrossRefGoogle Scholar
  25. Macedo, M., Barreto, S., Hallwass, M., & Inoue-nagata, A. (2014). High incidence of Tomato chlorosis virus alone and in mixed infection with begomoviruses in two tomato fields in the Federal District and Goiás state , Brazil. Tropical Plant Pathology, 39(6), 449–452.  https://doi.org/10.1590/S1982-56762014000600005.CrossRefGoogle Scholar
  26. Marubayashi, J. M., Yuki, V. A., Rocha, K. C. G., Mituti, T., Pelegrinotti, F. M., Ferreira, F. Z., Moura, M. F., Navas-Castillo, J., Moriones, E., Pavan, M. A., & Krause-Sakate, R. (2013). At least two indigenous species of the Bemisia tabaci complex are present in Brazil. Journal of Applied Entomology, 137(1–2), 113–121.  https://doi.org/10.1111/j.1439-0418.2012.01714.x.CrossRefGoogle Scholar
  27. Marubayashi, J. M., Kliot, A., Yuki, V. A., Rezende, J. A. M., Krause-Sakate, R., Pavan, M. A., & Ghanim, M. (2014). Diversity and localization of bacterial endosymbionts from whitefly species collected in Brazil. PLoS One, 9(9), e108363.  https://doi.org/10.1371/journal.pone.0108363.CrossRefGoogle Scholar
  28. Moraes, L. A., Marubayashi, J. M., Yuki, V. A., Ghanim, M., Bello, V. H., De Marchi, B. R., et al. (2017). New invasion of Bemisia tabaci Mediterranean species in Brazil associated to ornamental plants. Phytoparasitica, 45, 1–525.  https://doi.org/10.1007/s12600-017-0607-9.CrossRefGoogle Scholar
  29. Moraes, L. A., Muller, C., Bueno, R. C. O. F., Santos, A., Bello, V. H., De Marchi, B. R., et al. (2018). Distribution and phylogenetics of whiteflies and their endosymbiont relationships after the Mediterranean species invasion in Brazil. Scientific Reports, 8(1), 14589.  https://doi.org/10.1038/s41598-018-32913-1.CrossRefGoogle Scholar
  30. Moreno-Delafuente, A., Garzo, E., Moreno, A., & Fereres, A. (2013). A plant virus manipulates the behavior of its whitefly vector to enhance its transmission efficiency and spread. PLoS One, 8(4), e61543.  https://doi.org/10.1371/journal.pone.0061543.CrossRefGoogle Scholar
  31. Navas-Castillo, J., Fiallo-Olivé, E., & Sánchez-Campos, S. (2011). Emerging virus diseases transmitted by whiteflies. Annual Review of Phytopathology, 49, 219–248.  https://doi.org/10.1146/annurev-phyto-072910-095235.CrossRefGoogle Scholar
  32. Ning, W., Shi, X., Liu, B., Pan, H., Wei, W., Zeng, Y., Sun, X., Xie, W., Wang, S., Wu, Q., Cheng, J., Peng, Z., & Zhang, Y. (2015). Transmission of tomato yellow leaf curl virus by Bemisia tabaci as affected by whitefly sex and biotype. Scientific Reports, 5(1), 10744.  https://doi.org/10.1038/srep10744.CrossRefGoogle Scholar
  33. Pan, H., Chu, D., Yan, W., Su, Q., Liu, B., Wang, S., & Wu, Q. (2012). Rapid Spread of Tomato Yellow Leaf Curl Virus in China Is Aided Differentially by Two Invasive Whiteflies, 7(4), e34817.  https://doi.org/10.1371/journal.pone.0034817.
  34. RDevelopment, C. (2018). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  35. Ribeiro, S. G., De Ávila, A. C., Bezerra, I. C., Fernandes, J. J., Faria, J. C., Lima, M. F., et al. (1998). Widespread occurrence of tomato geminiviruses in Brazil, associated with the new biotype of the whitefly vector. Plant Disease, 82(7), 830.CrossRefGoogle Scholar
  36. Rojas, M. R., Gilbertson, R. L., Russell, D. R., & Maxwell, D. P. (1993). Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted Geminiviruses. Plant Disease, 77, 340.  https://doi.org/10.1094/PD-77-0340.CrossRefGoogle Scholar
  37. Shi, X., Pan, H., Xie, W., Jiao, X., Fang, Y., Chen, G., Yang, X., Wu, Q., Wang, S., & Zhang, Y. (2014). Three-Way Interactions Between the Tomato Plant, Tomato Yellow Leaf Curl Virus, and Bemisia tabaci (Hemiptera: Aleyrodidae) Facilitate Virus Spread. Journal of Economic Entomology, 107(3), 920–926.  https://doi.org/10.1603/EC13476.CrossRefGoogle Scholar
  38. Shi, X., Chen, G., Pan, H., Xie, W., Wu, Q., Wang, S., et al. (2018). Plants pre-infested with viruliferous MED/Q cryptic species promotes subsequent Bemisia tabaci infestation. Frontiers in Microbiology, 9(JUN), 1–8.  https://doi.org/10.3389/fmicb.2018.01404.Google Scholar
  39. Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87(6), 651–701.CrossRefGoogle Scholar
  40. Su, Q., Pan, H., Liu, B., Chu, D., Xie, W., Wu, Q., Wang, S., Xu, B., & Zhang, Y. (2013). Insect symbiont facilitates vector acquisition, retention, and transmission of plant virus. Scientific Reports, 3, 1–6.  https://doi.org/10.1038/srep01367.Google Scholar
  41. Sun, D.-B., Liu, Y.-Q., Qin, L., Xu, J., Li, F.-F., & Liu, S.-S. (2013). Competitive displacement between two invasive whiteflies: Insecticide application and host plant effects. Bulletin of Entomological Research, 103(03), 344–353.  https://doi.org/10.1017/S0007485312000788.CrossRefGoogle Scholar
  42. Walsh, P. S., Metzger, D. A., & Higuchi, R. (1991). Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques, 10(4), 506–513.Google Scholar
  43. Yao, F. L., Zheng, Y., Huang, X. Y., Ding, X. L., Zhao, J. W., Desneux, N., He, Y. X., & Weng, Q. Y. (2017). Dynamics of Bemisia tabaci biotypes and insecticide resistance in Fujian province in China during 2005-2014. Scientific Reports, 7(December 2016), 1–12.  https://doi.org/10.1038/srep40803.Google Scholar
  44. Zambrano, K., Carballo, O., Geraud, F., Chirinos, D., Fernández, C., & Marys, E. (2007). First report of tomato yellow leaf curl virus in Venezuela. Plant Disease, 91(6), 768.CrossRefGoogle Scholar
  45. Zanardo, L. G., Silva, F. N., Lima, A. T. M., Milanesi, D. F., Castilho-Urquiza, G. P., Almeida, A. M. R., Zerbini, F. M., & Carvalho, C. M. (2014). Molecular variability of cowpea mild mottle virus infecting soybean in Brazil. Archives of Virology, 159(4), 727–737.  https://doi.org/10.1007/s00705-013-1879-0.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Vinicius Henrique Bello
    • 1
  • Luís Fernando Maranho Watanabe
    • 1
  • Beatriz Rosa Santos
    • 1
  • Julio Massaharu Marubayashi
    • 1
  • Valdir Atsushi Yuki
    • 2
  • Bruno Rossitto De Marchi
    • 1
  • Marcelo Agenor Pavan
    • 1
  • Renate Krause-Sakate
    • 1
    Email author
  1. 1.UNESP – Faculdade de Ciências AgronômicasBotucatuBrazil
  2. 2.Centro de FitossanidadeInstituto Agronômico de CampinasCampinasBrazil

Personalised recommendations