, Volume 47, Issue 1, pp 31–41 | Cite as

Parasitic potential of entomopathogenic nematode Heterorhabditis indica against two Lepidopteran insect pests of cotton, Helicoverpa armigera (Hubner) and Spodoptera litura (Fabricious)

  • Nandini Gokte-Narkhedkar
  • Kanchan Bhanare
  • Prachi Nawkarkar
  • Prashanth Chilliveri
  • Babasaheb B. FandEmail author
  • S. Kranthi


Ten isolates of entomopathogenic nematode (EPN) Heterorhabditis indica were evaluated for their differential infectivity against two major cotton insect pests viz., Helicoverpa armigera and Spodoptera litura. The results of bioassay revealed that the third instar larvae of H. armigera were relatively more susceptible to the EPN isolates compared to the larvae of S. litura. All the ten EPN isolates could reproduce successfully on H. armigera larvae however, the isolates viz., CICR-Su and CICR-SUB exhibited relatively higher virulence. On the other hand, on S. litura larvae only one isolate- CICR-BBFNS2 was able to produce infective juveniles and the rest failed to do so. Analysis of haemolymph composition of EPN infected H. armigera and S. litura larvae indicated the phase change of bacterial symbionts as a primary reason for the failure of EPN to reproduce and multiply in S. litura larvae. Higher percentage of primary phase colonies of bacterial symbionts were recorded in H. armigera larvae which resulted in successful progeny production of EPN while secondary phase colonies were predominant in the larvae of S. litura which resulted in failure of EPN isolates to reproduce. Phylogenetic tree made using internal transcribed spacer (ITS) region of ribosomal DNA of nematodes and 16sRNA of bacterial symbionts revealed the distinctness and uniqueness of the EPN isolate CICR-BBFNS2 which was able to multiply on the larvae of both H. armigera and S. litura from rest of the nine isolates which could multiply only in H. armigera. The results indicate that isolate CICR-BBF-NS2 has potential for deployment in IPM programme for management of H. armigera and S. litura.


Entomopathogenic nematode Heterorhabditis indica Helicoverpa armigera Spodoptera litura Parasitic potential Photorhabdus luminescens 



This work is supported by the grants from Indian Council of Agricultural Research, New Delhi under the programme “Technology Mission on Cotton” and from the Department of Biotechnology, Govt. of India (Grant no. BT/PR9660/AGR/02/472/2007). The authors are grateful to the Director, ICAR-Central Institute for Cotton Research, Nagpur for providing necessary facilities and administrative support to carry out present research work.


  1. Akhurst, R. J., & Boemare, N. E. (1988). A numerical taxonomic study of the genus Xenorhabdus (Enterobacteriaceae) and proposed elevation of the subspecies of Xenorhabdus nematophilus to species. Journal of General Microbiology, 134, 1835–1845.Google Scholar
  2. Bedding, R. A., & Akhurst, R. J. (1975). A simple technique for the detection of insect parasitic rhabditid nematodes in soil. Nematologica, 21, 109–110.CrossRefGoogle Scholar
  3. Bowen, D. J., & Ensign, J. C. (1988). Purification and characterization of a high-molecular-weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Applied Environmental Microbiology, 64(8), 3029–3035.Google Scholar
  4. Brunel, B., Givaudan, A., Lanois, A., Akhurst, R. J., & Boemare, N. (1997). Fast and accurate identification of Xenorhabdus and Photorhabdus species by restriction analysis of PCR-amplified 16S rRNA genes. Applied Environmental Microbiology, 63, 574–580.Google Scholar
  5. CABI. (2014) Invasive Species Compendium: Datasheets, maps, images, abstracts and full text on invasive species of the world. Available online at Accessed 20 December 2018.
  6. Clarke, D. J., & Dowds, B. C. A. (1995). Virulence mechanisms of Photorhabdus sp. strain K-122 toward wax moth larvae. Journal of Invertebrate Pathology, 66, 149–155.CrossRefGoogle Scholar
  7. Divyaa, K., Sankarb, M., & Marulasiddesha, K. N. (2010). Efficacy of Entomopathogenic nematode, Heterorhabditis indica against three lepidopteran insect pests. Asian journal of experiment of biological. Science, 1, 183–188.Google Scholar
  8. Duchaud, E., Rusniok, C., Frangeul, L., Buchrieser, C., Givaudan, A., Taourit, S., Bocs, S., Boursaux-Eude, C., Chandler, M., Charles, J., Dassa, E., & Derose, R. et al. (2003). The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. National Biotechnology, 21, 1307–1313.Google Scholar
  9. Dunphy, G., Miyamoto, C., & Meighen, E. (1997). A homoserine lactone autoinducer regulates virulence of an insect-pathogenic bacterium, Xenorhabdus nematophilus (Enterobacteriaceae). Journal of Bacteriology, 179, 5288–5529.CrossRefGoogle Scholar
  10. Finney, D. J. (1971). Probit Analysis. Third Edition. UK: Cambridge University.Google Scholar
  11. Gaugler, R., & Kaya, H. K. (1990). Entomopathogenic nematodes in biological control. Boca Raton: CRC Press.Google Scholar
  12. Gokte-Narkhedkar, N., Lavhe, N. V., Panchbhai, P. R., & Khadi, B. M. (2008). Cottage industry scale in vivo production of Heterorhabditis indica for the control of Helicoverpa armigera on cotton in India. International Journal of Nematology., 18, 79–82.Google Scholar
  13. Gulsar-Banu, J., Dhara Jothi, B., & Gokate Narkhedkar, N. (2007). Susceptibility of different stages of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) to entomopathogenic nematodes. International Journal of Nematology, 17, 41–45.Google Scholar
  14. Han, R., & Ehlers, R.-U. (2001). Effect of Photorhabdus luminescens phase variants on the in vivo and vitro development and reproduction of the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae. FEMS Microbiology Ecology, 35, 239–247.CrossRefGoogle Scholar
  15. Hussaini, S.S. (2003). Progress of research work on entomopathogenic nematodes in India. (pp. 27–68). In: Current status of research on entomopathogenic nematodes in India. Hussaini, S. S., Rabindra, R. J., Nagesh, M. (Eds.) Project Directorate of Biological Control. Bangalore. 218 pp.Google Scholar
  16. Istkhar, P., & Chaubey, A. K. (2017). Impact of soil dwelling entomopathogenic nematodes, recovered from the soil of Uttar Pradesh (India), on cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Applied Biological Research, 19(1), 63–70.CrossRefGoogle Scholar
  17. Joyce, S. A., Reid, A. P., Driver, F., & Curran, J. (1994). Application of polymerase chain reaction (PCR) methods to the identification of entomopathogeic nematodes. In A. M. Burenll, R. U. Ehlers, & J. P. Masson (Eds.), Genetics of entomopathogenic nematode bacterium complex (pp. 178–187). Luxembourg: E.C. DG XII.Google Scholar
  18. Kaya, H. K., & Stock, S. P. (1997). Techniques in insect nematology. In L. A. Lacey (Ed.), Manual of techniques in insect pathology (pp. 281–324). London: Academic Press.CrossRefGoogle Scholar
  19. Klein, M. G. (1990). Efficacy against soil-inhabiting insect pests. In R. Gaugler & H. K. Kaya (Eds.), Entomopathogenic nematodes in biological control (pp. 195–214). Boca Raton: CRC Press.Google Scholar
  20. Lacey, L. A., & Georgis, R. (2012). Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology., 44(2), 218–225.Google Scholar
  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Brandall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 176, 265–275.Google Scholar
  22. Nguyen, K. B., & Smart, G. C., Jr. (1995). Morphometrics of infective juveniles of Steinernema spp. and Heterorhabditis bacteriophora (Nemata:Rhabditida). Journal of Nematology, 27, 206–212.Google Scholar
  23. Poinar, G. O., Karunakar, G. K., & David, H. (1992). Heterorhabditis indicus n. spp. (Rhabditida: Nematode) from India: Separation of Heterorhabditis spp. by infective juveniles. Fundamental and Applied Nematology, 15, 467–472.Google Scholar
  24. Prasad, C. S., Abid, H. M., Pal, R., & Prasad, M. (2012). Virulence of nematode Heterorhabditis indica (Meerut strain) against lepidopteran and coleopteran pests. Vegetos, 25(1), 343–351.Google Scholar
  25. Rajagopal, R., & Bhatnagar, R. K. (2002). Insecticidal toxic proteins produced by Photorhabdus luminescens akhurstii, a symbiont of Heterorhabditis indica. Journal of Nematology, 34(1), 23–70.Google Scholar
  26. Saravanapriya, B., & Subramanian, S. (2007). Pathogenicity of EPN to certain foliar insect pests. Annals of Plant Protection Sciences, 15(1), 219–222.Google Scholar
  27. Seinhorst, J. W. (1959). A rapid method for the transfer of nematodes from fixative to anhydrous glycerine. Nematologica, 4, 67–69.CrossRefGoogle Scholar
  28. Singh, S. P. (1994). Technology for production of natural enemies. Technical Bulletin, 4.Google Scholar
  29. Singh, N. B., & Sinha, R. N. (1977). Carbohydrates, lipids and proteins in the developmental stages of Sitophilus oryzae and Sitophilus granaries. Annual Entomology Society of America, 70, 107–111.CrossRefGoogle Scholar
  30. Smits, P. H., Groenen, J. T. M., & De Raay, G. (1991). Characterization of Heterorhabditis isolates using DNA restriction fragment length polymorphism. Revue de Nématologie, 14(3), 445–453.Google Scholar
  31. Vrain, T. C., Wakarchuk, D. A., Levesque, A. C., & Hamilton, R. I. (1992). Interspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundamental and Applied Nematology, 15, 563–573.Google Scholar
  32. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. S. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.CrossRefGoogle Scholar
  33. White, G. F. (1927). A method for obtaining infective nematode larvae from cultures. Science, 66, 302–303.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Division of Crop ProtectionICAR-Central Institute for Cotton ResearchNagpurIndia

Personalised recommendations