, Volume 47, Issue 1, pp 135–142 | Cite as

Stem inoculation with bacterial strains Bacillus amyloliquefaciens (GB03) and Microbacterium imperiale (MAIIF2a) mitigates Fusarium root rot in cassava

  • Monica A. Freitas
  • Flavio H. V. Medeiros
  • Itamar S. Melo
  • Priscila F. Pereira
  • Maria Fernanda G. V. Peñaflor
  • Jose M. S. Bento
  • Paul W. ParéEmail author


Cassava (Manihot esculenta), a major staple food in the developing world provides a starch-based carbohydrate diet for over half-a-billion people living in the tropics. Despite the plant’s resistance to most local insect pests and bacterial pathogens, cassava is susceptible to root rot caused by Fusarium solani. With the recent identification that the beneficial soil bacterium Bacillus amyloliquefaciens (GB03) increases iron accumulation in cassava, the question arises as to whether plant growth-promoting rhizobacteria (PGPR) also induces plant resistance to fungal infection and in turn, ameliorate cassava disease symptoms. Phytopathological analyses reveal that shoot-propagated cassava, inoculated with Bacillus amyloliquefaciens (GB03) or Microbacterium imperiale (MAIIF2a) induces increased shoot and root growth by over 100% compared to un-inoculated controls. Moreover, PGPR inoculation lowered disease incidence in greenhouse-grown plants by over half compared to media treated controls and reduced mycelial growth and fungal colonization with in vitro cassava-plant assays. These results demonstrate the integrated role beneficial bacteria play to increase plant growth and protect against pathogen infection in a starch crop that is cultivated on a global scale.


Bacillus amyloliquefaciens (GB03) Microbacterium imperiale (MAIIF2a) Fusarium solani root rot Induced systemic resistance (ISR) Manihot esculenta (cassava) Plant growth-promoting rhizobacteria (PGPR) 



Funding was generously provided by The Brazilian National Council for Scientific and Technological Development (CNPq Process 401330/2014-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Altindag, M., Sahin, M., Esitken, A., Ercisli, S., Guleryuz, M., Donmez, M. F., & Sahin, F. (2006). Biological control of brown rot (Moniliana laxa Ehr.) on apricot (Prunus armeniaca L. cv. Hacihaliloglu) by Bacillus, Burkholderia and Pseudomonas application under in vitro and in vivo conditions. Biological Control, 38, 369–372.CrossRefGoogle Scholar
  2. Aziz, M., Nadipalli, R. K., Xitao, X., Sun, Y., Suowiec, K., Zhang, J. L., & Paré, P. W. (2016). Augmenting sulfur metabolism and herbivore defense in Arabidopsis by bacterial volatile signaling. Frontiers in Plant Science, 7, 1–14.CrossRefGoogle Scholar
  3. Bandyopadhyay, R., Mwangi, M., Aigbe, S., & Leslie, J. F. (2006). Fusarium species from the cassava root rot complex in West Africa. Phytopathology, 96, 673–676.CrossRefGoogle Scholar
  4. Brannen, P. M., & Kenney, D. S. (1997). Kodiak registered: A successful biological control product forsupression of soilborne pathogens of cotton. J. Indutrial. Microbial Biotechnology, 19, 169–171.CrossRefGoogle Scholar
  5. Cardoso, E. M. R., Poltronieri, L. S., & Trindade, D. R. (2000). Recomendações para o controle da podridão mole de raízes de mandioca no Estado do Pará. Belém: Embrapa Amazônia Oriental. Circular Técnica, 13, 1–15.Google Scholar
  6. Cubeta, M. A., Hartman, G. L., & Sinclair, J. B. (1985). Interaction between Bacillus subtilis and fungi associated with soybeen seeds. Plant Disease, 69, 506–509.Google Scholar
  7. Datnoff, L. E., Elmer, W. H., & Huber, D. M. (2007). Mineral nutrition and plant diseases (p. 278). Saint Paul: American Phytopathological Society.Google Scholar
  8. Farag, M. A., Zhang, H. M., & Ryu, C. M. (2013). Dynamic chemical communication between plants and bacteria through airborne signals: Induced resistance by bacterial volatiles. Journal of Chemical Ecology, 39, 1007–1018.CrossRefGoogle Scholar
  9. Ferreira, D. F. (2011). Sisvar: A computer statistical analysis system. Ciência e Agrotecnologia, Lavras, 35, 1039–1042.CrossRefGoogle Scholar
  10. Freitas, M. A., Medeiros, F. H. V., Carvalho, S. P., Guilherme, L. R., Teixeira, W. D., Zhang, H., & Paré, P. W. (2015). Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis (GB03). Frontiers in Plant Science, 6, 1–7.CrossRefGoogle Scholar
  11. Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41, 109–117.CrossRefGoogle Scholar
  12. Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., & Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43, 895–914.CrossRefGoogle Scholar
  13. Howeler R, Lutaladio N, Thomas G (2013) Save and grow cassava: a guide to sustainable production intensification. Food and agriculture organization of the United Nations. Rome 130 p.Google Scholar
  14. Jha, C. K., & Saraf, M. (2015). Plant growth promoting Rhizobacteria (PGPR): A review. Journal of Agricultural Research Development, 5, 108–119.Google Scholar
  15. Keinath, A. P., Batson Jr., W. E., Caceres, J., Sumner, M. L. D. R., Brannen, P. M., Rothrock, C. S., Huber, D. M., Benson, D. M., Conway, K. E., Schneider, R. N., Motsenbocker, C. E., Cubeta, M. A., Ownley, B. H., Canaday, C. H., Adams, P. D., & Backman, F. J. (2000). Evaluation of biological and chemical seed treatments to improve stand of snap bean across the southern United States. Crop Protection, 19, 501–509.CrossRefGoogle Scholar
  16. Khalid, A., Sultana, S., Arshad, M., Mahmood, S., Mahmood, T., & Siddique, M. T. (2011). Performance of auxin producing rhizobacteria for improving growth and yield of wheat and rice grown in rotation under field conditions. International Journal of Agriculture Applied Science, 3, 44–50.Google Scholar
  17. Kloepper, J. W., & Schroth, M. N. (1981). Relationship of in vitro antibiosis of plant growth-promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology, 71, 1020–1024.CrossRefGoogle Scholar
  18. Kozdrój, J., Trevors, J. T., & Van Elsas, J. D. (2004). Influences of introduced potential biocontrol agents on maize seedling growth and bacterial community structure in the rhizosphere. Oil Biology & Biochemistry, 36, 1775–1784.CrossRefGoogle Scholar
  19. Mari, M., Guizzardi, M., & Pratella, G. C. (1996). Biological control of gray mold in pears by antagonistic bacteria. Biological Control, 7, 30–37.CrossRefGoogle Scholar
  20. Melo, I. S., Faria, R., & Teixeira, M. A. (2005). Diversidade de bactérias endofíticas na cultura da mandioca. Boletim de Pesquisa e Desenvolvimento, 33, 6–24.Google Scholar
  21. Montagnac, J. A., Davis, C. R., & Tanumihardjo, S. A. (2009). Nutritional value of cassava for use as a staple food and recent advances for improvement. Comprehensive Reviews in Food Science and Food Safety, 8, 181–194.CrossRefGoogle Scholar
  22. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.CrossRefGoogle Scholar
  23. Nehl DB, Knox OGG (2006) Significance of bacteria in the rhizosphere in: Mukerji, K.; Manoharachary, C.; Singh, J. Soil Biology: Microbial activity in the rhizoshere. (pp. 89–119) Berlin: Springer, GER.Google Scholar
  24. Nhassico, D., Muquingue, H., Cliff, J., Cumbana, A., & Bradbury, J. H. (2008). Rising African cassava production, diseases due to high cyanide intake and control measures. Journal of the Science of Food and Agriculture, 88, 2043–2049.CrossRefGoogle Scholar
  25. Notaro, K. A., Medeiros, E. V., Silva, C., & Barros, J. A. (2013). Prospecting of phytopathogens associated to cassava root rot in the state of Pernambuco, Brazil. Bioscience Journal, 29, 1832–1839.Google Scholar
  26. Oliveira, S. A. S., Hohenfeld, C. S., Santos, V. S., Haddad, F., & Oliveira, E. J. (2013). Resistance to Fusarium dry root rot disease in cassava accessions. Pesquisa Agropecuária Brasileira, 48, 1414–1417.CrossRefGoogle Scholar
  27. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L., & Thonart, P. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 9, 1084–1090.CrossRefGoogle Scholar
  28. Onyando, P. C., Mutungi, C., Ubedhend, G., & Lindgayer, G. (2011). Modification of gluten-free sorghum batter and bread using maize, potato, cassava or rice starch. LWT - Food Science and Technology, 44(3), 681–686.CrossRefGoogle Scholar
  29. Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G. V., Ban, T., Hodson, D., Dixon, J. M., Ortiz-Monasterio, J. I., & Reynolds, M. (2008). Climate change: can wheat beat the heat? Agriculture, Ecosystems and Environment, 126(1–2), 46–58.CrossRefGoogle Scholar
  30. Prabakar, K., & Reguchander, T. (2000). Fungicidal control of cassava brown leaf spot caused by Cercospora henningsii Allescher. The Madras Agricultural Journal, 87, 537–538.Google Scholar
  31. Quandt-Hallmann, A., Hallmann, J., & Kloepper, J. W. (1997). Bacterial endophytes in cotton: Location and interaction with other plant-associated bacteria. Journal of Microbiology, 43, 254–259.Google Scholar
  32. Robbs CF (1991) Bacteria as agents of biological control of phytopathogens. In: Bettiol, W. Controle biológico de doenças de plantas. Embrapa, (pp. 121–133). Jaguariúna- São Paulo, Brazil.Google Scholar
  33. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., & Paré, P. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 100, 4927–4932.CrossRefGoogle Scholar
  34. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., & Paré, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134, 1017–1026.CrossRefGoogle Scholar
  35. Salomon, M. V., Purpora, R., Bottini, R., & Piccoli, P. (2016). Rhizosphere associated bacteria trigger accumulation of terpenes in leaves of Vitis vinifera L. cv. Malbec that protect cells against reactive oxygen species. Plant Physiology and Biochemistry, 106, 295–304.CrossRefGoogle Scholar
  36. Sanchez, H. D., Osella, C. A., & De La Torre, M. A. (2002). Optimization of gluten-free bread prepared from cornstarch, rice flour, and cassava starch. Journal of Food Science, 67, 416–419.CrossRefGoogle Scholar
  37. Shanner, G., & Finney, R. E. (1977). The effect of nitrogen fertilization on the expression of slow mildewing resistance in Knox wheat. Phytopathology, 67, 1051–1056.CrossRefGoogle Scholar
  38. Spaepen, S., & Vanderleyden, J. (2010). Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology, 3.
  39. Stevenson, I. L. (1956). Antibiotic activity of Actinomycetes in soil and their controlling effects on root-rot of wheat. Journal of General Microbiology, 14, 440–448.CrossRefGoogle Scholar
  40. Teixeira, M. A., Melo, I. S., Vieira, R. F., Costa, F. E. C., & Harakava, R. (2007). Microrganismos endofíticos de mandioca de áreas comerciais e etnovariedades em três estados brasileiros. Pesquisa Agropecuária Brasileira, 42, 43–49.CrossRefGoogle Scholar
  41. Utkhede, R. S., & Rahe, J. E. (1983). Interactions of antagonists and pathogens in biological control of onion white rot. Phytopathology, 73, 890–893.CrossRefGoogle Scholar
  42. Vacheron, J., Desbrosses, G., Bouffaud, M. L., Touraine, B., Moënne-Loccoz, Y., Muller, D., Legendre, L., Wisniewski-Dyé, F., & Prigent-Combaret, C. (2013). Plant growth-promoting rhizobacteria and root system functioning. Plant Science, 4.
  43. Viswanathan, R., & Samyappan, R. (2002). Induced systemic resistance by fluorescent Pseudomonas against red rot disease of sugarcane caused by Colletotrichum falcatum. Crop Protection, 21, 1–10.CrossRefGoogle Scholar
  44. Zhang, H., Kim, M.-S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M. A., Ryu, C.-M., Allen, R., Melo, I. S., & Paré, P. W. (2007). Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta, 226, 839–851.CrossRefGoogle Scholar
  45. Zhang, H., Sun, Y., Xie, X., Kim, M.-S., Dowd, S. E., & Paré, P. W. (2009). A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. The Plant Journal, 58, 568–577.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Monica A. Freitas
    • 1
  • Flavio H. V. Medeiros
    • 2
  • Itamar S. Melo
    • 3
  • Priscila F. Pereira
    • 2
  • Maria Fernanda G. V. Peñaflor
    • 2
  • Jose M. S. Bento
    • 1
  • Paul W. Paré
    • 4
    Email author
  1. 1.Department of Entomology & AcarologyUniversity of São PauloPiracicabaBrazil
  2. 2.Department of Plant Pathology & EntomologyFederal University of LavrasLavrasBrazil
  3. 3.Embrapa EnvironmentJaguariunaBrazil
  4. 4.Department of Chemistry & BiochemistryTexas Tech UniversityLubbockUSA

Personalised recommendations