, Volume 47, Issue 1, pp 1–15 | Cite as

What do we really know on the harmfulness of Cryptoblabes gnidiella (Millière) to grapevine? From ecology to pest management

  • Andrea LucchiEmail author
  • Renato Ricciardi
  • Giovanni Benelli
  • Bruno Bagnoli


Though the honeydew moth Cryptoblabes gnidiella (HM) was never deemed an important pest of grapevine in the Mediterranean area, recent observations led to consider this species as a primary carpophagous moth, as always believed in South America. Larval feeding accounts for a progressive grape decay due to superficial erosion of rachis and berry peduncles, with vascular system breakdown and proliferation of pathogenic rotting agents and saprophagous insects. Recent observations carried out over a three-year period (2015–2017) in Apulian vineyards (Southern Italy) confirmed that this moth pest shows four main flight periods per year, with relatively low captures from the beginning of May to the end of July and their gradual but substantial increase from beginning of August onwards. The presence on the bunches of an extremely small preimaginal population of HM in May, June and July, suggests the existence of alternative hosts for oviposition and offspring development in this timeframe. Overall, herein we summarized current knowledge available on biology, ecology and control of HM, adding new information on the relationships existing between the moth and the grapevine as well. In the final section, current and perspective control strategies to manage HM are outlined.


Christmas berry webworm Host plants IPM Phenology Phycitinae Population dynamics Viticulture Honeydew moth 



Three anonymous reviewers kindly improved an earlier version of our manuscript. We are grateful to the managers of the Marchesi Antinori group (Andrea Bencini and Mattia Nocentini) and Tormaresca farm (Peppino Palumbo, Antonio Caputo and Laura Minoia) for their qualified cooperation in the moth monitoring and field surveys.

Compliance with ethical standards

Conflict of interest

The Authors declare no competing interests.

Supplementary material

12600_2018_705_MOESM1_ESM.doc (244 kb)
ESM 1 (DOC 244 kb)
12600_2018_705_MOESM2_ESM.doc (658 kb)
ESM 2 (DOC 658 kb)


  1. Anshelevich, L., Kehat, M., Dunkelblum, E., & Greenberg, S. (1993). Sex pheromone traps for monitoring the honeydew moth, Cryptoblabes gnidiella: effect of pheromone components, pheromone dose, field aging of dispenser, and type of trap on male captures. Phytoparasitica, 21(3), 189–198.CrossRefGoogle Scholar
  2. Avidov, Z., & Gothilf, S. (1960). Observations on the honeydew moth (Cryptoblabes gnidiella Milliere) in Israel. Ktavim, 10(3–4), 109–124.Google Scholar
  3. Avidov, Z. & Harpaz, I. (1969). Plant Pests of Israel. Israel Universities Press, Jerusalem. 549 pp. (370–372).Google Scholar
  4. Bagnoli, B., & Lucchi, A. (2001). Bionomics of Cryptoblabes gnidiella (Millière) (Pyralidae Phycitinae) in Tuscan vineyards. IOBC/WPRS Bulletin, 24(7), 79–84.Google Scholar
  5. Bisotto-de-Oliveira, R., Redaelli, L. R., Sant’Ana, J., & Botton, M. (2007). Parasitoids associated with Cryptoblabes gnidiella (Lepidoptera, Pyralidae) in grapevine, state of Rio Grande do Sul, Brazil. Arquivos do Instituto Biológico (São Paulo), 74(2), 115–119.Google Scholar
  6. Bjostad, L. B., Gurevitz, E., Gothilf, S., & Roelofs, W. L. (1981). Sex attractant for the honeydew moth, Cryptoblabes gnidiella. Phytoparasitica, 9, 95–99.CrossRefGoogle Scholar
  7. Botton, M., Afonso, A. P. S. & Ringenberg, R. (2003). Manejo de pragas na cultura da videira. In: Seminário Estadual De Fruticultura, 3., 2003, Palmas, PR. Anais. Palmas, PR: Facipal; Bento Gonçalves: Embrapa Uva e Vinho, pp. 23–31.Google Scholar
  8. Botton, M., Carbonari, J., Danieli, R., Nondillo, A., & Lucchi, A. (2017). Olhos vigilantes. Cultivar Hortaliças e Frutas, 15(104), 5–7.Google Scholar
  9. Briosi, G. (1877). Il marciume od il bruco dell’uva (Albinia Wockiana Briosi). Atti Reale Accademia Lincei (s. III) I, Roma, 24 pp.Google Scholar
  10. CABI. (2012). Cryptoblabes gnidiella (citrus pyralid). Crop Protection Compendium. Accessed March 8, 2013 from:
  11. Carter, D. J. (1984). Pest Lepidoptera of Europe with special reference to the British Isles. Dr. W. Junk Publishers, 431 pp. (190–191).Google Scholar
  12. Cocco, A., Muscas, E., Mura, A., Iodice, A., Savino, F., & Lentini, A. (2018). Influence of mating disruption on the reproductive biology of the vine mealybug, Planococcus ficus (Hemiptera: Pseudococcidae), under field conditions. Pest Management Science.
  13. Daane, K.M., Almeida, R.P.P., Bell, V.A., Walker, J.T.S., Botton, M., Fallahzadeh, M., Mani, M., Miano, J.L., Sforza, R., Walton, V.M. & Zaviezo, T. (2012). Biology and management of mealybugs in vineyards. In: N.J. Bostanian, C Vincent & R. Isaacs (Eds.): Arthropod Management in Vineyards: pests, approaches, and future directions. Springer Science + Business Media B.V. 2012, pp. 271–307.Google Scholar
  14. Deseö, K. V. (1980). Due fitofagi di secondaria importanza nei vigneti emiliani: Euzophera bigella Zell. ed Ephestia parasitella ssp. unicolorella Staud. (Lepidoptera, Pyralidae). Informatore Fitopatologico, 30(6), 7–9.Google Scholar
  15. Genduso, P. (1987). The grape-vine moth in the framework of IPM in Sicily. In: R. Cavalloro (Ed.): Integrated pest control in Viticulture, Portoferraio (Italy), 26–28 Sept. 1985. AA Balkema, pp. 69–82.Google Scholar
  16. Goater, B. (1986). British Pyralid Moths, a guide to their identification (p. 175). England: Harley Books.Google Scholar
  17. Goidanich, A. (1957). Crittoblabe. In Enciclopedia Agraria Italiana, III Crem-Ess, REDA, pp. 51–52.Google Scholar
  18. Harari, A. R., Zahavi, T., Gordon, D., Anshelevich, L., Harel, M., Ovadia, S., & Dunkelblum, E. (2007). Pest management programmes in vineyards using male mating disruption. Pest Management Science, 63, 769–775.CrossRefGoogle Scholar
  19. Hartig, F. (1939). Contributo alla conoscenza della fauna lepidotterologica dell’Italia centrale. Memorie della Società Entomologica Italiana, 18, 186–198.Google Scholar
  20. Heckford, R. J., & Sterling, P. H. (2004). Notes on, and descriptions of some larvae of Oecophoridae, Gelechiidae and Pyralidae (Lepidoptera). Entomologist’s Gazette, 55(3), 143–159.Google Scholar
  21. Huertas Dionisio, M. (2007). Estados inmaturos de Lepidoptera (XXX). Tres especies del género Ephestia Guenée, 1845 en huelva, España (Lepidoptera: Pyralidae, Phycitinae). SHILAP Revista de Lepidopterologia, 35(140), 381–399.Google Scholar
  22. Ioriatti, C., & Lucchi, A. (2016). Semiochemical strategies for tortricid moth control in apple orchards and vineyards in Italy. Journal of Chemical Ecology, 42(7), 571–583.CrossRefGoogle Scholar
  23. Ioriatti, C., Lucchi, A. & Varela, L.G. (2012). Grape Berry Moths in Western European Vineyards and their recent movement into the New World. In: N.J. Bostanian, C Vincent & R. Isaacs (Eds.): Arthropod Management in Vineyards: pests, approaches, and future directions. Springer Science + Business Media B.V. 2012, pp. 339–359.Google Scholar
  24. Lucchi, A., & Benelli, G. (2018). Towards pesticide-free farming? Sharing needs and knowledge promotes Integrated Pest Management. Environmental Science and Pollution Research, 25, 13439-13445.
  25. Lucchi, A., & Santini, L. (2011). Life history of Lobesia botrana on Daphne gnidium in a Natural Park of Tuscany. IOBC/WPRS Bulletin, 67, 197–202.Google Scholar
  26. Lucchi, A., Botton, M., & Bagnoli, B. (2011). Tignola rigata su vite da tenere sotto controllo. L’Informatore Agrario, 31, 65–69.Google Scholar
  27. Lucchi, A., Ladurner, E., Iodice, A., Savino, F., Ricciardi, R., Cosci, F., Conte, G., & Benelli, G. (2018a). Eco-friendly pheromone dispensers - a green route to manage the European grapevine moth? Environmental Science and Pollution Research, 25, 9426–9442.CrossRefGoogle Scholar
  28. Lucchi, A., Sambado, P., Royo, A. B. J., Bagnoli, B., Conte, G., & Benelli, G. (2018b). Disrupting mating of Lobesia botrana using sex pheromone aerosol devices. Environmental Science and Pollution Research, 25, 22196–22204.CrossRefGoogle Scholar
  29. Martinez-Sañudo, I., Mazzon, L., Dalla Vecchia, P., Bagnoli, B., Lucchi, A., Marchesini, E., & Mori, N. (2013). Pyralidae Phycitinae in Italian vineyards: behavioural and molecular genetic investigations. Integrated Protection and Production in Viticulture. IOBC-WPRS Bulletin, 85, 211–215.Google Scholar
  30. Millière, P. (1867). Iconographie et description de chenilles et Lépidoptères inèdits. Vingt-sixième livraison. Annales de la Société Linnéenne de Lyon, tome 19, Année 1872. pp. 51–90.Google Scholar
  31. Molet, T. (2013). CPHST Pest Datasheet for Cryptoblabes gnidiella. USDA-APHIS-PPQ- CPHST (Last update: July 29, 2016).Google Scholar
  32. Moth Photographers Group (2018). Mississippi State University. Lepidoptera Genitalia Library, 990225–19225, Cryptoblabes gnidiella (Milliere, 1864) ( = 19225). Accessed: October 2018.
  33. Passoa, S.C. (2009). Screening key for CAPS target Pyraloidea in the eastern and midwestern United States. (males). USDA-APHIS-PPQ. 15 pp.Google Scholar
  34. Ringenberg, R., Botton, M., Silveira, M., & Nondillo, A. (2005). Biologia comparada e exigências térmicas de Cryptoblabes gnidiella em dieta artificial. Pesquisa Agropecuária Brasileira, 40, 1059–1065.CrossRefGoogle Scholar
  35. Royals, H.R., Gilligan, T.M. & Passoa, S. (2017). Screening aid: Christmas berry webworm, Cryptoblabes gnidiella (Millière). Identification Technology Program (ITP), USDA-APHIS-PPQ-S&T, Fort Collins, CO. 5 pp. (
  36. Scatoni, I. B., & Bentancourt, C. M. (1983). Cryptoblabes gnidiella (Millière): una nueva lagarta de los racimos en los vinedos de nuestro paìs. Revista de la AIA, 1, 266–268.Google Scholar
  37. Sellanes, C., & González, A. (2014). The potential of sex pheromones analogues for the control of Cryptoblabes gnidiella (Lepidoptera: Pyralidae), an exotic pest in South America. IOBC-WPRS Bulletin, 99, 55–60.Google Scholar
  38. Sellanes, C., Rossini, C., & González, A. (2010). Formate analogs as antagonists of the sex pheromone of the honeydew moth, Cryptoblabes gnidiella: electrophysiological, behavioral and field evidence. Journal of Chemical Ecology, 36, 1234–1240.CrossRefGoogle Scholar
  39. Silva, E. M. B., & Mexia, A. (1999). The pest complex Cryptoblabes gnidiella (Millière) (Lepidoptera: Pyralidae) and Planococcus citri (Risso) (Homoptera: Pseudococcidae) on sweet orange groves (Citrus sinensis (L.) Osbeck) in Portugal: interspecific association. Boletin de Sanidad Vegetal Plagas, 25(1), 89–98.Google Scholar
  40. Sing, Y. P., & Sing, D. K. (1997). Host plants, extent of damage and seasonal abundance of earhead caterpillar Cryptoblabes gnidiella (Millière). Advances in Agricultural Research in India, 7, 133–137.Google Scholar
  41. Thiéry, D., Louâpre, P., Muneret, L., Rusch, A., Sentenac, G., Vogelweith, F., Iltis, C., & Moreau, J. (2018). Biological protection against grape berry moths. A review. Agronomy for Sustainable Development, 38(2), 15.CrossRefGoogle Scholar
  42. Vidart, M. V., Mujica, M. V., Calvo, M. V., Duarte, F., Bentancourt, C. M., Franco, J., & Scatoni, I. B. (2013). Relationship between male moths of Cryptoblabes gnidiella (Millière) (Lepidoptera: Pyralidae) caught in sex pheromone traps and cumulative degree-days in vineyards in southern Uruguay. SpringerPlus, 2(1), 258.CrossRefGoogle Scholar
  43. Yehuda, S.B., Wysoki, M. & Rosen, D. (1991–92). Phenology of the honeydew moth, Cryptoblabes gnidiella (Millière) (Lepidoptera: Piralidae) on avocado in Israel. Israel Journal of Entomology, 25–26, 149–160.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
  2. 2.Department for Innovation in Biological, Agro-food and Forest SystemsUniversity of TusciaViterboItaly

Personalised recommendations