Advertisement

Characterization of culturable gut bacterial isolates from wild population of melon fruit fly (Bactrocera cucurbitae) and assessing their attractancy potential for sustainable pest management

  • Mala Mishra
  • Kirti Sharma
  • S. Subramanian
Article
  • 3 Downloads

Abstract

The melon fruit fly, Bactrocera cucurbitae (Coquillett) poses a serious threat to cucurbit production worldwide. Its management by conventional means remains difficult due to their proclivity to oviposite in fruit. In view of the increasing environmental safety concerns, use of biocontrol agents for sustainable pest control holds immense potential. Given this, the study intended to identify the cultivable bacteria inhabiting the intestinal tract of adult male and female melon fruit flies (Bactrocera cucurbitae) separately from field-collected population, and to assess the attractiveness of these bacteria to the fly. All selected bacterial isolates were identified and characterized based on morphological, biochemical and 16S rRNA gene sequence. Bacterial community identified in the gut of B. cucurbitae predominantly composed of Enterobacteriaceae followed by Staphylococcaceae, Enterococcaceae, Bacillaceae and Brucellaceae. Further, the laboratory bioassay was employed to examine the attractiveness of the supernatant as well as whole culture broth of 10 different species of bacteria to B. cucurbitae adults. Among these, Klebsiella oxytoca and Citrobacter freundii followed by Bacillus cereus were found highly attractive to fruit flies. The field experiment using supernatant of two bacteria demonstrated that the K. oxytoca was significantly more attractive to female flies followed by C. freundii.

Keywords

Attractancy Bacterocera cucurbitae Enterobacteriaceae Klebsiella Management 

Notes

Acknowledgements

The first author acknowledges the financial support by University Grants Commission, Government of India [PDFWM-2013-14-GE-UTT-16855(SA-II)] and Director, ICAR-IARI, New Delhi for providing facilities. Mala Mishra wishes to express her gratitude to the technical staff Mr. Ram Singh and Mr. Parmeshwer Ram for their technical assistance during the study.

Compliance with ethical standards

Conflict of interest

The authors and funding agency declare that they have no conflict of interest.

Supplementary material

12600_2018_694_MOESM1_ESM.docx (12 kb)
ESM 1 (DOCX 11 kb)

References

  1. Archie, E. A., & Theis, K. R. (2011). Animal behavior meets microbial ecology. Animal Behavior, 82, 425–436.CrossRefGoogle Scholar
  2. Badii, K. B., Billah, M. K., Afresh-Nuamah, K., Obeng-Ofori, D., & Nyakro, G. (2015). Review of the pest status, economic impact, and management of fruit-infesting flies (Diptera:Tephritidae) in Africa. African Journal of Agricultural Research, 10(12), 1488–1498.CrossRefGoogle Scholar
  3. Behar, A., Jurkevitch, E., & Yuval, B. (2008). Bringing back the fruit into fruit fly-bacteria interactions. Molecular Ecology, 17, 1375–1386.CrossRefPubMedCentralGoogle Scholar
  4. Behar, A., Ben-Yosef, M., Lauzon, C. R., Yuval, B., & Jurkevich, E. (2009). Structure and function of the bacterial community associated with the Mediterranean fruit fly. In K. Bourtzis & T. Miller (Eds.), Insect symbiosis (pp. 251–271). Boca Raton: CRC Press.Google Scholar
  5. Blum, J. E., Fischer, C. N., Miles, J., & Handelsman, J. (2013). Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. mBio, 4(6), e00860–e00813.CrossRefPubMedCentralGoogle Scholar
  6. Capuzzo, C., Firrao, G., Mazzon, L., Squartini, A., & Girolami, V. (2005). ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). International Journal of Systematic and Evolutionary Microbiology, 55, 1641–1647.CrossRefPubMedCentralGoogle Scholar
  7. Carraher, C., Dalziel, J., Jordan, M. D., Christie, D. L., Newcomb, R. D., & Kralicek, A. V. (2015). Towards an understanding of the structural basis for insect olfaction by odorant receptors. Insect Biochemistry and Molecular Biology, 66, 31–41.CrossRefPubMedCentralGoogle Scholar
  8. Cheng, D., Guo, Z., Riegler, M., Xi, Z., Liang, G., & Xu, Y. (2017). Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome, 5, 13.  https://doi.org/10.1186/s40168-017-0236-z.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Crotti, E., Rizzi, A., Chouaia, B., Ricci, I., Favia, G., Alma, A., Sacchi, L., Bourtzis, K., Mandrioli, M., Cherif, A., Bandi, C., & Daffonchio, D. (2010). Acetic acid bacteria, newly emerging symbionts of insects. Applied and Environmental Microbiology, 76, 6963–6970.CrossRefPubMedCentralGoogle Scholar
  10. Daser, U., & Brandl, R. (1992). Microbial gut floras of 8 species of tephritids. Biological Journal of the Linnean Society, 45, 155–165.CrossRefGoogle Scholar
  11. Davis, T. S., Crippen, T. L., Hofstetter, R. W., & Tomberlin, J. K. (2013). Microbial volatile emissions as insect Semiochemicals. Journal of Chemical Ecology, 39, 840–859.  https://doi.org/10.1007/s10886-013-0306-z.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Drew, R. A. I., & Lloyd, A. C. (1987). Relationship of fruit flies (Diptera: Tephritidae) and their bacteria to host plants. Annals of the Entomological Society of America, 80, 629–636.CrossRefGoogle Scholar
  13. Drew, R. A. I., & Lloyd, A. C. (1991). Bacteria in the life cycle of tephritid fruit flies. In: Microbial mediation of plant- herbivore interactions. (Ed. by Barbosa P, Krischik VA and Jones CG) Wiley, New York. pp. 441–465.Google Scholar
  14. Drew, R. A. I., & Raghu, S. (2002). The fruit fly fauna (Diptera: Tephritidae: Dacinae) of the rainforest habitat of the Western Ghats, India. Raffels Bulletin of Zoology, 50(2), 327–352.Google Scholar
  15. Effmert, U., Kalderás, J., Warnke, R., & Piechulla, B. (2012). Volatile mediated interactions between bacteria and fungi in the soil. Journal of Chemical Ecology, 38(6), 665–703.  https://doi.org/10.1007/s10886-012-0135-5.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Engel, P., & Moran, N. A. (2013). The gut microbiota of insects - diversity in structure and function. FEMS Microbiology Review, 37(5), 699–735.  https://doi.org/10.1111/1574-6976.12025.CrossRefGoogle Scholar
  17. Gujjar, N. R., Govindan, S., Verghese, A., Subramaniam, S., & More, R. (2017). Diversity of the cultivable gut bacterial communities associated with the fruit flies Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae). Phytoparasitica, 45, 453–460.  https://doi.org/10.1007/s12600-017-0604-z.CrossRefGoogle Scholar
  18. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (2000). Bergey's manual of determinative bacteriology (pp. 175–533). New York: LIPPNCOTT Williams and Wilkins.Google Scholar
  19. Howard, D. J. (1989). Thesymbionts of Rhagoletis, In A. S. Robinson and G. Hooper (eds.) Fruit Flies, Their Biology, Natural Enemies and Control, Elsevier, New York. 3 (A) pp. 121–129.Google Scholar
  20. Howard, D. J., Bush, G. L., & Breznak, J. A. (1985). The evolutionary significance of bacteria associated with Rhagoletis. Evolution, 39, 405–417.CrossRefPubMedCentralGoogle Scholar
  21. Kai, M., Haustein, M., Molina, F., Petri, A., Scholz, B., & Piechulla, B. (2009). Bacterial volatiles and their action potential. Applied Microbiology and Biotechnology, 81, 1001–1012.CrossRefPubMedCentralGoogle Scholar
  22. Kounatidis, I., Crotti, E., Sapountzis, P., Sacchi, L., Rizzi, A., & Chouaia, B. (2009). Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). Applied and Environmental Microbiology, 75, 3281–3288.CrossRefPubMedCentralGoogle Scholar
  23. Kuzina, L. V., Peloquin, J. J., Vacek, D. C., & Miller, T. A. (2001). Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae). Current Microbiology, 42, 290–294.PubMedPubMedCentralGoogle Scholar
  24. MacCollom, G., Lauzon, C., Sjogren, R., Meyer, W., & Olday, F. (2009). Association and attraction of blueberry maggot fly (Diptera: Tephritidae) to Pantoea (Enterobacter) agglomerans. Environmental Entomology, 38(1), 116–120.CrossRefPubMedCentralGoogle Scholar
  25. Naaz, N., Choudhary, J. S., Prabhakar, C. S., Moanaro, & Maurya, S. (2016). Identification and evaluation of cultivable gut bacteria associated with peach fruit fly, Bactrocera zonata (Diptera: Tephritidae). Phytoparasitica, 44, 165–176.  https://doi.org/10.1007/s12600-016-0518-1.CrossRefGoogle Scholar
  26. Narit, T., & Anuchit, C. (2011). Attraction of Bactrocera cucurbitae and B. papaya (Diptera: Tephritidae) to the odor of the bacterium Enterobacter cloacae. Philippine Agricultural Scientist, 94, 1–6.Google Scholar
  27. Prabhakar, C. S., Sood, P., Kapoor, V., Kanwar, S. S., Mehta, P. K., & Sharma, P. N. (2009). Molecular and biochemical characterization of three bacterial symbionts of fruit fly, Bactrocera tau (Tephritidae: Diptera). Journal of General and Applied Microbiology, 55, 213–220.CrossRefGoogle Scholar
  28. Prabhakar, C. S., Sood, P., Kanwar, S. S., Sharma, P. N., Kumar, A., & Mehta, P. K. (2013). Isolation and characterization of gut bacteria of fruit fly, Bactrocera tau (Walker). Phytoparasitica, 41, 193–201.CrossRefGoogle Scholar
  29. Prokopy, R. J., Drew, R. A. I., Sabine, B. N. E., Lloyd, A. C., & Hamacek, E. (1991). Effect of physiological and experiential state of Bactrocera tryoni flies on intra-tree foraging behavior for food (bacteria) and host fruit. Oecologia, 87, 394–400.CrossRefPubMedCentralGoogle Scholar
  30. Reddy, K., Sharma, K., & Singh, S. (2014). Attractancy potential of culturable bacteria from the gut of peach fruit fly, Bactrocera zonata (Saunders). Phytoparasitica, 42, 691–698.  https://doi.org/10.1007/s12600-014-0410-9.CrossRefGoogle Scholar
  31. Robacker, D. C. (2007). Chemical ecology of bacteria relationships with fruit flies. Integrated protection of olive crops. IOBC/WPRS Bulletin, 30, 9–22.Google Scholar
  32. Robacker, D. C., & Bartelt, R. (1997). Chemicals attractive to Mexican fruit fly from Klebsiella pneumoniae and Citrobacter freundii cultures sampled by solid-phase microextraction. Journal of Chemical Ecology, 23, 2897–2915.CrossRefGoogle Scholar
  33. Robacker, D. C., & Garcia, J. A. (1993). Effects of age, time of day, feeding history, and gamma irradiation on attraction of Mexican fruit flies (Diptera: Tephritidae), to bacterial odor in laboratory experiments. Environmental Entomology, 22, 1367–1374.CrossRefGoogle Scholar
  34. Robacker, D. C., & Moreno, D. S. (1995). Protein feeding attenuates attraction of Mexican fruit flies (Diptera: Tephritidae) to volatile bacteria metabolites. Florida Entomologist, 78, 62–69.CrossRefGoogle Scholar
  35. Robacker, D. C., Garcia, J. A., Martinez, A. J., & Kaufman, M. G. (1991). Strain of Staphylococcus attractive to laboratory strain Anastrepha ludens (Diptera: Tephritidae). Annals of the Entomological Society of America, 84, 555–559.CrossRefGoogle Scholar
  36. Robacker, D. C., Lauzon, C. R., & He, X. D. (2004). Volatiles production and attractiveness to the Mexican fruit fly of Enterobacter agglomerans isolated from apple maggot and Mexican fruit flies. Journal of Chemical Ecology, 30, 1329–1347.CrossRefPubMedCentralGoogle Scholar
  37. Robacker, D. C., Lauzon, C. R., Patt, J., Margara, F., & Sacchetti, P. (2009). Attraction of Mexican fruit flies (Diptera: Tephritidae) to bacteria: Effects of culturing medium on odor volatiles. Journal of Applied Entomology, 133, 155–163.CrossRefGoogle Scholar
  38. Romoli, R., Papaleo, M., De Pascale, D., Tutino, M., Michaud, L., & LoGiudice, A. (2014). GC-MS volatolomic approach to study the antimicrobial activity of the antarctic bacterium Pseudoalteromonas spTB41. Metabolomics, 10, 42–51.  https://doi.org/10.1007/s11306-013-0549-2.CrossRefGoogle Scholar
  39. Sacchetti, P. S., Landini, A., Granchietti, A., Camera, A., Rosi, M. C., & Belcari, A. (2007). Attractiveness to the olive fly of Pseudomonas putida isolated from the foregut of Bactrocera oleae. IOBC/WPRS Bull., 30, 37–42.Google Scholar
  40. Sacchetti, P., Granchietti, A., Landini, S., Viti, L., Giovannetti, L., & Belcari, A. (2008). Relationships between the olive fly and bacteria. Journal of Applied Entomology, 132, 682–689.CrossRefGoogle Scholar
  41. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.PubMedPubMedCentralGoogle Scholar
  42. Sapkota, R., Dahal, K. C., & Thapa, R. B. (2010). Damage assessment and management of cucurbit fruit files in spring-summer squash. Journal of Entomology and Nematology, 2(1), 007–012.Google Scholar
  43. Sharma, R., & Sohal, S. K. (2016). Oviposition response of melon fruit fly, Bactrocera cucurbitae (Coquillett) to different phenolic compounds. Journal of Biopesticides, 9(1), 46–51.Google Scholar
  44. Shi, Z., Wang, L., & Zhang, H. (2012). Low diversity bacterial community and the trapping activity of metabolites from cultivable bacteria species in the female reproductive system of the oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae). International Journal of Molecular Sciences, 13, 6266–6278.CrossRefPubMedCentralGoogle Scholar
  45. Sood, P., Prabhakar, C. S., & Mehta, P. K. (2010). Eco-friendly management of fruit flies through their gut bacteria. Journal of Insect Science, 23(3), 275–283.Google Scholar
  46. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.CrossRefPubMedCentralGoogle Scholar
  47. Thaochan, N., Drew, R. A. I., Hughes, J. M., Vijaysegaran, S., & Chinajariyawong, A. (2010). Alimentary tract bacteria isolated and identified with API- 20E and molecular cloning techniques from Australian tropical fruit flies, Bactrocera cacuminata and B. tryoni. Journal of Insect Science, 10, 131.CrossRefPubMedCentralGoogle Scholar
  48. Venu, I., Durisko, Z., Xu, J., & Dukas, R. (2014). Social attraction mediated by fruit flies’ microbiome. Jounal of Experimental Biology, 217, 1346–1352.  https://doi.org/10.1242/jeb.099648.CrossRefGoogle Scholar
  49. Virgilio, M., Delatte, H., Backeljau, T., & De Meyer, M. (2010). Macrogeographic population structuring in the cosmopolitan agricultural pest Bactrocera cucurbitae (Diptera: Tephritidae). Molecular Ecology, 19, 2713–2724.CrossRefPubMedCentralGoogle Scholar
  50. Wang, H., Jin, L., & Zhang, H. (2011). Comparison of the diversity of the bacterial communities in the intestinal tract of adult Bactrocera dorsalis from three different populations. Journal of Applied Microbiology, 110, 1390–1401.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Division of Entomology, Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations