, Volume 46, Issue 5, pp 677–687 | Cite as

Multi-resistance to thiophanate-methyl, diethofencarb, and procymidone among Alternaria alternata populations from tobacco plants, and the management of tobacco brown spot with azoxystrobin

  • H. C. Wang
  • C. Q. ZhangEmail author


In 2014 and 2015, a total of 151 tobacco brown spot (Alternaria alternata) isolates were collected from Guizhou Province in China to evaluate their resistance to the benzimidazole thiophanate-methyl, the carbamate diethofencarb, and the dicarboximide procymidone. Resistance to thiophanate-methyl and diethofencarb was observed in all isolates. Resistance to all the three fungicides, thiophanate-methyl, diethofencarb, and procymidone was detected at a frequency of 6.0%. The F167Y single mutation in the β-tubulin gene was found to be associated with resistance to thiophanate-methyl,but no mutation was found in the coiled-coil region of the histidine kinase-encoding gene OS1, a fungal gene for dicarboximide resistance. Procymidone applied at the rate of 20 mg l−1 inhibited spot lesion formation on tobacco leaves with an efficacy of 51.7% for the low resistance (LR) isolates and 74.2% for the procymidone-sensitive isolates. Thiophanate-methyl applied at 100 mg l−1, however, slightly promoted the expansion of disease lesions with an efficacy of −7.7%. Azoxystrobin applied at 10 and 20 mg l−1 provided efficacies of 91.1 and 100%, respectively, regardless of whether the isolates were thiophanate-methyl resistant or procymidone-LR. Further studies suggested that azoxystrobin exhibited excellent protective activity and good curative activity against A. alternata in plants. The baseline sensitivity to azoxystrobin was then determined. In the presence SHAM, the mean EC50 values for conidial germination inhibition were 0.49 ± 0.22 (Mean ± SD) mg l−1. Interestingly, no resistance was recovered through UV irradiation or Agrobacterium tumefaciens-mediated mutagenesis. This research indicated widespread resistance to thiophanate-methyl and diethofencarb, low frequency of (6.0%) resistance to procymidone in A. alternata populations from tobacco, and suggested that azoxystrobin could potentially constitute a good alternative for the management of tobacco brown spot disease.


Alternaria alternata Tobacco brown spot Benzimidazole fungicides; dicarboximide fungicides Azoxystrobin Fungicide resistance and management Baseline sensitivity 



This research was partially supported by the NSFC (No. 31360448) and cooperative program of the Guizhou Academy of Tobacco Science. We would like to thank LetPub ( for providing linguistic assistance during the preparation of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Albertini, C., Gredt, M., & Leroux, P. (1999). Mutations of the β-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis. Pesticide Biochemistry and Physiology, 64, 17–31.CrossRefGoogle Scholar
  2. Avenot, H., Simoneau, P., Iacomi-Vasilescu, B., & Bataille-Simoneau, N. (2005). Characterization of mutations in the two-component histidine kinase gene AbNIK1 from Alternaria brassicicola that confer high dicarboximide and phenylpyrrole resistance. Current Genetics, 47, 234–243.CrossRefGoogle Scholar
  3. Avila-Adame, C., & Köller, W. (2003). Impact of alternative respiration and target-site mutations on responses of germinating conidia of Magnaporthe grisea to Qo-inhibiting fungicides. Pest Management Science, 59, 303–309.CrossRefGoogle Scholar
  4. Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., & Parr-Dobrzansk, B. (2002). The strobilurin fungicides. Pest Management Science, 58, 649–662.CrossRefGoogle Scholar
  5. Chen, C. J., Wang, J. X., Luo, Q. Q., & Yuan, S. K. (2007). Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum (wheat scab). Pest Management Science, 63, 1201–1207.CrossRefGoogle Scholar
  6. Chen, Y., Yang, X., Yuan, S. K., Li, Y. F., Zhang, A. F., Yao, J., & Gao, T. C. (2015). Effect of azoxystrobin and kresoxim-methyl on rice blast and rice grain yield in China. Annals of Applied Biology, 166, 434–443.CrossRefGoogle Scholar
  7. Cheng, D. D., Jia, Y. J., Gao, H. Y., Zhang, L. T., Zhang, Z. S., Xue, Z. C., & Meng, Q. W. (2011). Characterization of the programmed cell death induced by metabolic products of Alternaria alternata in tobacco BY-2 Cell. Physiologia Plantarum, 141, 117–129.CrossRefGoogle Scholar
  8. Davidson, R. M., Hanson, L. E., Franc, G. D., & Panella, L. (2006). Analysis of β-tubulin gene fragments from benzimidazole-sensitive and -tolerant Cercospora beticola. Journal of Phytopathology, 154, 321–328.CrossRefGoogle Scholar
  9. Di, Y. L., Lu, X. M., Zhu, Z. Q., & Zhu, F. X. (2016). Time course of carbendazim stimulation on pathogenicity of Sclerotinia sclerotiorum indicates a direct stimulation mechanism. Plant Disease, 100, 1454–1459.CrossRefGoogle Scholar
  10. Dong, X. C., Zhang, Z. Q., Liu, L. M., & Zhang, H. J. (2009). Comparison on the control effects of 6 fungicides on the main diseases in tobacco in its late growth stage. Journal of Anhui Agricultural Science, 37, 9032–9037.Google Scholar
  11. Drabesova, J., Ryanek, P., Brunner, P., McDonald, B. A., & Croll, D. (2013). Population genetic structure of Mycosphaerella graminicola and Quinone outside inhibitor (Qo I) resistance in the Czech Republic. European Journal of Plant Pathology, 135, 211–224.CrossRefGoogle Scholar
  12. Estep, L. K., Torriani, S. F., Zala, M., Anderson, N. P., Flowers, M. D., McDonald, B. A., Mundt, C. C., & Brunner, P. C. (2015). Emergence and early evolution of fungicide resistance in north American populations of Zymoseptoria tritici. Plant Pathology, 64, 961–971.CrossRefGoogle Scholar
  13. Fairchild, K. L., Miles, T. D., & Wharton, P. S. (2013). Assessing fungicide resistance in populations of Alternaria in Idaho potato fields. Crop Protection, 49, 31–39.CrossRefGoogle Scholar
  14. Fan, Z., Yang, J. H., Fan, F., Luo, C. X., & Schnabel, G. (2015). Fitness and competitive ability of Alternaria alternata field isolates with resistance to SDHI, QoI, and MBC fungicides. Plant Disease, 99, 1744–1750.CrossRefGoogle Scholar
  15. Firoz, J., Xiao, X., Zhu, F. X., Fu, Y. P., Jiang, D. H., Schnabel, G., & Luo, C. X. (2016). Exploring mechanisms of resistance to dimethachlone in Sclerotinia sclerotiorum. Pest Management Science, 72, 770–779.CrossRefGoogle Scholar
  16. Karaoglanidis, G. S., Luo, Y., & Michailides, T. J. (2011). Competitive ability and fitness of Alternaria alternata isolates resistant to QoI fungicides. Plant Disease, 95, 178–182.CrossRefGoogle Scholar
  17. Koenraadt, H., Somerville, S. C., & Jones, A. L. (1992). Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology 82, 1348–1354.CrossRefGoogle Scholar
  18. Leroux, P., Fritz, R., Debieu, D., Albertin, C., Lanen, C., Bach, J., Gredt, M., & Chapeland, F. (2002). Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Management Science, 58, 876–888.CrossRefGoogle Scholar
  19. Li, Y. J., Chen, H. M., & Yang, Y. (2002). Evaluations of fungicides controlling of tobacco brown spot in fields. Pesticides, 41, 31–33.Google Scholar
  20. Lin, T., Xu, X. F., Dai, D. J., Shi, H. J., Wang, H. D., & Zhang, C. Q. (2016). Differentiation in development of benzimidazole resistance in Colletotrichum gloeosporioides complex populations from strawberry and grape hosts. Australasian Plant Pathology, 36, 73–77.Google Scholar
  21. Liu, S. M., Duan, Y. B., Ge, C. Y., Chen, C. J., & Zhou, M. G. (2013). Functional analysis of the β2-tubulin gene of Fusarium graminearum and the β-tubulin gene of Botrytis cinerea by homologous replacement. Pest Management Science, 69, 582–588.CrossRefGoogle Scholar
  22. Lucas, G. B. (1975). Diseases of tobacco, 3rd edn. Biological Consulting Associates, Raleigh.Google Scholar
  23. Ma, Z. H., & Michailides, T. J. (2004). Characterization of iprodione-resistant Alternaria isolates from pistachio in California. Pesticide Biochemistry and Physiology, 80, 75–84.CrossRefGoogle Scholar
  24. Ma, Z. H., & Michailides, T. J. (2005). Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 24, 853–863.CrossRefGoogle Scholar
  25. Ma, Z. H., Yoshimura, M. A., Holtz, B. A., & Michailides, T. J. (2005). Characterization and PCR-based detection of benzimidazole-resistant isolates of Monilinia laxa in California. Pest Management Science, 61, 449–457.CrossRefGoogle Scholar
  26. Maymon, M., Zveibil, A., Pivonia, S., Minz, D., & Freeman, S. (2006). Identification and characterization of benomyl-resistant and -sensitive populations of Colletotrichum gloeosporioides from Statice (Limonium spp.). Phytopathology, 96, 542–548.CrossRefGoogle Scholar
  27. McKay, G., Egan, J. D., Morris, E., & Brown, A. E. (1998). Identification of benzimidazole resistance in Cladobotryum dendroides using a PCR-based method. Mycological Research, 102, 671–676.CrossRefGoogle Scholar
  28. Mikaberidze, A., McDonald, B. A., & Bonhoeffer, S. (2014). Can high-risk fungicides be used in mixtures without selecting for fungicide resistance? Phytopathology, 104, 324–331.CrossRefGoogle Scholar
  29. Nenad, T., Anja, M., Rade, S., Milana, M., Jelena, J., Ivo, T., & Jelena, B. (2015). Occurrence of Cercospora beticola populations resistant to benzimidazoles and demethylation-inhibiting fungicides in Serbia and their impact on disease management. Crop Protection, 75, 80–87.CrossRefGoogle Scholar
  30. Nishimura, S., & Kohmoto, K. (1983). Host-specific toxins and chemical structures from Alternaria species. Annual Review of Phytopathology, 21, 87–116.CrossRefGoogle Scholar
  31. Panebianco, A., Castello, I., Cirvilleri, G., Perrone, G., Epifani, F., Ferrara, M., Polizzi, G., Walters, D. R., & Vitale, A. (2015). Detection of Botrytis cinerea field isolates with multiple fungicide resistance from table grape in Sicily. Crop Protection, 77, 65–73.CrossRefGoogle Scholar
  32. Pitt, W. M., Sosnowski, M. R., Huang, R., Qiu, Y., Steel, C. C., & Savocchia, S. (2012). Evaluation of fungicides for the management of Botryosphaeria canker of grapevines. Plant Disease, 96, 1303–1308.CrossRefGoogle Scholar
  33. Russell, P. E. (2004). Sensitivity baselines in fungicide resistance research and management. FRAC Monograph 3, CropLife International, Brussels. Available on line at www. frac. Info.Google Scholar
  34. Sang, H., Popko, J. T., Chang, J. T., & Jung, G. (2017). Molecular mechanisms involved in qualitative and quantitative resistance to the dicarboximide fungicide iprodione in Sclerotinia homoeocarpa field isolates. Phytopathology, 107, 198–207.CrossRefGoogle Scholar
  35. Shew, H. D., & Lucas, G. B. (1991). Compendium of tobacco diseases. American Phytopathological Society, St. Paul.Google Scholar
  36. Standish, J. R., Avenot, F. H., Brenneman, T. B., & Stevenson, K. L. (2016). Location of an intron in the cytochrome b gene indicated reduced risk of QoI fungicide resistance in Fusicaldium effusum. Plant Disease, 100, 2294–2298.CrossRefGoogle Scholar
  37. Stavely, J. R. (1975). Relationship of postinoculation leaf wetness to initiation of tobacco brown spot. Phytopathology, 65, 897–901.CrossRefGoogle Scholar
  38. Torres-Calzada, C., Tapia-Tussel, R., Higuera-CiaparaI, M. R., Nexticapan-Garcez, A., & Perez-Brito. (2015). Sensitivity of Colletotrichum truncatum to four fungicides and characterization of thiabendazole-resistant isolates. Plant Disease, 99, 1590–1595.CrossRefGoogle Scholar
  39. Vega, B., Liberti, D., Harmon, P. F., & Dewdney, M. M. (2012). A rapid resazurin-based microtiter assay to evaluate QoI sensitivity for Alternaria alternata isolates and their molecular characterization. Plant Disease, 96, 1262–1270.CrossRefGoogle Scholar
  40. Vitale, A., Panebianco, A., & Polizzi, G. (2016). Baseline sensitivity and efficacy of fluopyram in Botrytis cinerea from table grape in Italy. Annals of Applied Biology, 169, 36–45.CrossRefGoogle Scholar
  41. Walker, A. S., Micoud, A., Rémuson, F., Grosman, J., Gredt, M., & Leroux, P. (2013). French vineyards provide information that opens ways for effective resistance management of Botrytis cinerea (grey mould). Pest Management Science, 69, 667–678.CrossRefGoogle Scholar
  42. Xu, H. J., Wang, Y. J., Zhao, P. B., Zhang, Y. B., Xu, R. Y., & Li, D. C. (2011). A cAMP-dependent protein kinase gene, aapk1, is required for mycelia growth, toxicity and pathogenicity of Alternaria alternata on tobacco. Journal of Phytopathology, 159, 208–216.CrossRefGoogle Scholar
  43. Zhang, C. Q., Liu, Y. H., & Zhu, G. N. (2010). Detection and characterization of benzimidazole resistance of Botrytis cinerea in greenhouse vegetables. European Journal of Plant Pathology, 126, 509–515.CrossRefGoogle Scholar
  44. Zhang, C. Q., Liu, Y. H., Ding, L., & Zhu, G. N. (2011). Shift of sensitivity of Botrytis cinerea to azoxystrobin in greenhouse vegetables before and after exposure to the fungicide. Phytoparasitica, 39, 293–302.CrossRefGoogle Scholar
  45. Zhang, C., Wu, H., Li, X., Shi, H., Wei, F., & Zhu, G. (2013a). Baseline sensitivity of natural populations and resistance of mutants of Xanthomonas oryzae pv. oryzae to a novel bactericide, zinc thiazole. Plant Pathology, 62, 1378–1383.CrossRefGoogle Scholar
  46. Zhang, W. M., Zhang, C. Q., Zhou, Z. B., & Deng, Y. (2013b). Field efficacy evaluation of different fungicides in controlling Alternaria alternata on tobacco. Biological Disaster Science, 36, 288–290.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Guizhou Academy of Tobacco ScienceGuiyangChina
  2. 2.Department of Crop ProtectionZhejiang Agriculture and Forest UniversityLin’anChina

Personalised recommendations