, Volume 46, Issue 1, pp 127–135 | Cite as

Artificial diet based investigation on the impact of purified Cry1Ac, Cry1Fa and Cry2Ab on the survival and reproductive performance of adult green lacewing, Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae)



The green lacewing Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae) is a common and abundant predator in many cropping systems in palearctic realm and it’s conservation is helpful in sustainable pest management in agro-ecosystem. Prior to commercialization of Bt crops in any agro- ecosystem, it is necessary to evaluate the impact of Cry proteins upon non-target organisms especially biological control agents (BCA). In present study an artificial diet consisting of shrimp, beef, beef liver and egg yolk was developed to mass-rear C. pallens for its use as biological control agents in sustainable pest management. Moreover, an artificial diet based risk assessment protocol was developed to investigate the impact of Cry1Ac, Cry1Fa and Cry2Ab on the survival and reproductive performance of C. pallens adults. C. pallens was fed on diets incorporated with Cry proteins and without addition of Cry proteins (control). The same diet containing boric acid was served as a positive control. Temporal stability, bioactivity and intake of Cry proteins by C. pallens were confirmed using double-antibody sandwich, enzyme-linked immunosorbent assay and bioactivity verification bioassays. Survival and reproductive performance of C. pallens, e.g., pre-oviposition period, daily fecundity, total fecundity and 30-day old adults dry weights, exhibited non-significant differences (p > 0.05) for the diets containing Cry1Ac, Cry1Fa and Cry2Ab (50 μg/g) against Control. However, significant reduction in survival and reproductive performance (p < 0.05) was observed in positive control. Our findings reveal that artificial diet is a good source of nutritional requirement with enhanced survival and reproductive performance of C. pallens and can be used for mass rearing of predator in case of natural diet scarcity and Cry proteins are safe for adult C. pallens and Bt crops cultivation help in predators conservation in sustainable agriculture.


Bt crops Chrysopa pallens Cry proteins Mass rearing 



This study was funded by the Transgenic Major Projects Program of the Ministry of Science and Technology, China (2014ZX08011-002). The funding source does not play a role in any aspect of the study, or in our decision to submit the paper for publication.

Author’s contribution

IA, conceived of, designed and performed the experiments. IA wrote the paper and analyzed the data. SZ and JC contributed to the reagents/ materials/ analysis tools. JC read and approved the final manuscript. Other authors help in refining the manuscript.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.


  1. Adamczyk, J. J., & Gore, J. (2004). Laboratory and field performance of cotton containing Cry1Ac, Cry1F, and both Cry1Ac and Cry1F (widestrike®) against beet armyworm and fall armyworm larvae (Lepidoptera: Noctuidae). Florida Entomologist, 87, 427–432.CrossRefGoogle Scholar
  2. Ali, I., Zhang, S., Luo, J.-Y., Wang, C.-Y., Lv, L.-M., & Cui, J.-J. (2016). Artificial diet development and its effect on the reproductive performances of Propylea japonica and Harmonia axyridis. Journal of Asia-Pacific Entomology, 19, 289–293.CrossRefGoogle Scholar
  3. Ali, I., Zhang, S., Iqbal, M., Ejaz, S., & Cui, J.-j. (2017). Trypsinized Cry1Fa and Vip3Aa have no detrimental effects on the adult green lacewing Chrysopa pallens (Neuroptera: Chrysopidae). Applied Entomology and Zoology, 52, 321–327.Google Scholar
  4. Bai, Y., Jiang, M., & Cheng, J. (2005). Effects of transgenic rice pollen on the oviposition and adult longevity of Chrysoperla sinica Tjeder. Acta Phytophylacica Sinica, 32, 225–230.Google Scholar
  5. Betz, F. S., Hammond, B. G., & Fuchs, R. L. (2000). Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regulatory Toxicology and Pharmacology, 32, 156–173.CrossRefPubMedGoogle Scholar
  6. Buntin, G. D. (2008). Corn expressing Cry1Ab or Cry1F endotoxin for fall armyworm and corn earworm (Lepidoptera: Noctuidae) management in field corn for grain production. Florida Entomologist, 91, 523–530.Google Scholar
  7. Choi, M., LEE, G., Paik, C., & LEE, J. (2000). Development of artificial diets for green lacewing, Chrysopa pallens (Rambur), by addition of natural products. Korean Journal of Applied Entomology, 39, 99–103.Google Scholar
  8. Duan, J. J., Huesing, J., & Teixeira, D. (2007). Development of tier-I toxicity assays for Orius Insidiosus (Heteroptera: Anthocoridae) for assessing the risk of plant-incorporated protectants to nontarget heteropterans. Environmental Entomology, 36, 982–988.CrossRefPubMedGoogle Scholar
  9. Duelli, P. (2001). Lacewings in field crops. In P. K. McEwen, T. R. New, and A. E. Whittington (Ed.), Lacewings in the Crop Environment (pp. 158–171). Cambridge: Cambridge University Press.Google Scholar
  10. Dutton, A., Romeis, J., & Bigler, F. (2003). Assessing the risks of insect resistant transgenic plants on entomophagous arthropods Bt-maize expressing Cry1Ab as a case study. Biological Control, 48, 611–636.Google Scholar
  11. Habes, D., Morakchi, S., Aribi, N., Farine, J.-P., & Soltani, N. (2006). Boric acid toxicity to the German cockroach, Blattella germanica: Alterations in midgut structure, and acetylcholinesterase and glutathione S-transferase activity. Pesticide Biochemistry and Physiology, 84, 17–24.CrossRefGoogle Scholar
  12. Harwood, J. D., Wallin, W. G., & Obrycki, J. J. (2005). Uptake of Bt endotoxins by nontarget herbivores and higher order arthropod predators: Molecular evidence from a transgenic corn agroecosystem. Molecular Ecology, 14, 2815–2823.CrossRefPubMedGoogle Scholar
  13. Hilbeck, A., Baumgartner, M., Fried, P. M., & Bigler, F. (1998a). Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla cornea (Neuroptera: Chrysopidae). Environmental Entomology, 27, 480–487.CrossRefGoogle Scholar
  14. Hilbeck, A., Moar, W. J., Pusztai-Carey, M., Filippini, A., & Bigler, F. (1998b). Toxicity of Bacillus thuringiensis CrylAb toxin to the predator Chrysoperla carnea (Neuroptera: Chrysopidae). Environmental Entomology, 27, 1255–1263.CrossRefGoogle Scholar
  15. James, C. (2014). Global status of commercialized biotech/GM crops: 2014. ISAAA brief no. 49. ISAAA: Ithaca.Google Scholar
  16. Kumar, R., Tian, J.-C., Naranjo, S. E., & Shelton, A. M. (2014). Effects of Bt cotton on Thrips tabaci (Thysanoptera: Thripidae) and its predator, Orius insidiosus (Hemiptera: Anthocoridae). Journal of Economic Entomology, 107, 927–932.CrossRefPubMedGoogle Scholar
  17. Lawo, N. C., & Romeis, J. (2008). Assessing the utilization of a carbohydrate food source and the impact of insecticidal proteins on larvae of the green lacewing, Chrysoperla carnea. Biological Control, 44, 389–398.CrossRefGoogle Scholar
  18. Lawo, N. C., Wackers, F. L., & Romeis, J. (2010). Characterizing indirect prey-quality mediated effects of a Bt crop on predatory larvae of the green lacewing, Chrysoperla camea. Journal of Insect Physiology, 56, 1702–1710.CrossRefPubMedGoogle Scholar
  19. Lee, K. S., & Lee, J. H. (2005). Rearing of Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae) on artificial diet. Entomological Research, 35, 183–188.CrossRefGoogle Scholar
  20. Li, Y. H., Meissle, M., & Romeis, J. (2010). Use of maize pollen by adult Chrysoperla carnea (Neuroptera: Chrysopidae) and fate of cry proteins in Bt-transgenic varieties. Journal of Insect Physiology, 56, 157–164.CrossRefPubMedGoogle Scholar
  21. Li, Y. H., Hu, L., Romeis, J., Wang, Y. A., Han, L. Z., Chen, X. P., & Peng, Y. F. (2014). Use of an artificial diet system to study the toxicity of gut-active insecticidal compounds on larvae of the green lacewing Chrysoperla sinica. Biological Control, 69, 45–51.CrossRefGoogle Scholar
  22. Liu, S., Wang, S., Liu, B., Zhou, C., & Zhang, F. (2011). The predation function response and predatory behavior observation of Chrysopa pallens Larva to Bemisia tabaci. Scientia Agricultura Sinica, 6, 010.Google Scholar
  23. Liu, X., Chen, M., Collins, H. L., Onstad, D. W., Roush, R. T., Zhang, Q., Earle, E. D., & Shelton, A. M. (2014). Natural enemies delay insect resistance to Bt crops. PLoS One, 9, e90366.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lovei, G. L., & Arpaia, S. (2005). The impact of transgenic plants on natural enemies: A critical review of laboratory studies. Entomologia Experimentalis et Applicata, 114, 1–14.CrossRefGoogle Scholar
  25. Lu, Q.-f., & Xiao, X.-J. (2009). A summary on the debates of environmental risks of genetically modified crops [J]. Journal of Shandong University of Science and Technology (Social Sciences), 5, 003.Google Scholar
  26. Mason, C. E., Sheldon, J. K., Pesek, J., Bacon, H., Gallusser, R., Radke, G., & Slabaugh, B. (2008). Assessment of Chrysoperla plorabunda longevity, fecundity, and egg viability when adults are fed transgenic Bt corn pollen. Journal of Agricultural and Urban Entomology, 25, 265–278.CrossRefGoogle Scholar
  27. McEwen, P., New, T., & Whittington, A. (Eds.). (2001). Lacewing in the crop management. Cambridge: Cambridge University Press.Google Scholar
  28. Meissle, M., Zünd, J., Waldburger, M., & Romeis, J. (2014). Development of Chrysoperla carnea (Stephens)(Neuroptera: Chrysopidae) on pollen from Bt-transgenic and conventional maize. Scientific Reports, 4, 5900.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nienstedt, K. M., Brock, T. C. M., van Wensem, J., Montforts, M., Hart, A., Aagaard, A., Alix, A., Boesten, J., Bopp, S. K., Brown, C., Capri, E., Forbes, V., Kopp, H., Liess, M., Luttik, R., Maltby, L., Sousa, J. P., Streissl, F., & Hardy, A. R. (2012). Development of a framework based on an ecosystem services approach for deriving specific protection goals for environmental risk assessment of pesticides. Science of the Total Environment, 415, 31–38.CrossRefPubMedGoogle Scholar
  30. Palm, C., Donegan, K., Harris, D., & Seidler, R. (1994). Quantification in soil of Bacillus thuringiensis var. kurstaki δ-endotoxin from transgenic plants. Molecular Ecology, 3, 145–151.CrossRefGoogle Scholar
  31. Principi, M., & Canard, M. (1984). Feeding habits. In M. Canard, Y. Semeria, and T.R. New (Ed.), Biology of Chrysopidae (pp. 76–92). The Hague: Dr W. Junk Publishers.Google Scholar
  32. Raybould, A., Kilby, P., & Graser, G. (2013). Characterising microbial protein test substances and establishing their equivalence with plant-produced proteins for use in risk assessments of transgenic crops. Transgenic Research, 22, 445–460.CrossRefPubMedGoogle Scholar
  33. Rodrigo-Simón, A., De Maagd, R. A., Avilla, C., Bakker, P. L., Molthoff, J., González-Zamora, J. E., & Ferré, J. (2006). Lack of detrimental effects of Bacillus thuringiensis cry toxins on the insect predator Chrysoperla carnea: A toxicological, histopathological, and biochemical analysis. Applied and Environmental Microbiology, 72, 1595–1603.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Romeis, J., & Meissle, M. (2011). Non-target risk assessment of Bt crops–cry protein uptake by aphids. Journal of Applied Entomology, 135, 1–6.CrossRefGoogle Scholar
  35. Romeis, J., Meissle, M., & Bigler, F. (2006). Transgenic crops expressing bacillus thuringiensis toxins and biological control. Nature Biotechnology, 24, 63–71.CrossRefPubMedGoogle Scholar
  36. Romeis, J., Bartsch, D., Bigler, F., Candolfi, M. P., Gielkens, M. M., Hartley, S. E., Hellmich, R. L., Huesing, J. E., Jepson, P. C., & Layton, R. (2008). Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nature Biotechnology, 26, 203.CrossRefPubMedGoogle Scholar
  37. Romeis, J., Hellmich, R. L., Candolfi, M. P., Carstens, K., De Schrijver, A., Gatehouse, A. M., Herman, R. A., Huesing, J. E., McLean, M. A., Raybould, A., Shelton, A. M., & Waggoner, A. (2011). Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants. Transgenic Research, 20, 1–22.CrossRefPubMedGoogle Scholar
  38. Romeis, J., Raybould, A., Bigler, F., Candolfi, M. P., Hellmich, R. L., Huesing, J. E., & Shelton, A. M. (2013). Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating arthropod-resistant genetically engineered crops. Chemosphere, 90, 901–909.CrossRefPubMedGoogle Scholar
  39. Shelton, A. M., Naranjo, S. E., Romeis, J., Hellmich, R. L., Wolt, J. D., Federici, B. A., Albajes, R., Bigler, F., Burgess, E. P., & Dively, G. P. (2009). Setting the record straight: A rebuttal to an erroneous analysis on transgenic insecticidal crops and natural enemies. Transgenic Research, 18, 317–322.CrossRefPubMedGoogle Scholar
  40. Su, H. H., Tian, J. C., Naranjo, S., Romeis, J., Hellmich, R., & Shelton, A. (2015). Bacillus thuringiensis plants expressing Cry1Ac, Cry2Ab and Cry1F are not toxic to the assassin bug, Zelus renardii. Journal of Applied Entomology, 139, 23–30.CrossRefGoogle Scholar
  41. Tian, J. C., Wang, X. P., Long, L. P., Romeis, J., Naranjo, S. E., Hellmich, R. L., Wang, P., Earle, E. D., & Shelton, A. M. (2013). Bt crops producing Cry1Ac, Cry2Ab and Cry1F do not harm the green lacewing, Chrysoperla rufilabris. PLoS One, 8, e60125.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tian, J.-C., Long, L.-P., Wang, X.-P., Naranjo, S. E., Romeis, J., Hellmich, R. L., Wang, P., & Shelton, A. M. (2014). Using resistant prey demonstrates that Bt plants producing Cry1Ac, Cry2Ab, and Cry1F have no negative effects on Geocoris punctipes and Orius insidiosus. Environmental Entomology, 43, 242–251.CrossRefPubMedGoogle Scholar
  43. Wang, Y. Y., Li, Y. H., Romeis, J., Chen, X. P., Zhang, J., Chen, H. Y., & Peng, Y. F. (2012). Consumption of Bt rice pollen expressing Cry2Aa does not cause adverse effects on adult Chrysoperla sinica Tjeder (Neuroptera: Chrysopidae). Biological Control, 61, 246–251.CrossRefGoogle Scholar
  44. Wang, Y., Dai, P., Chen, X., Romeis, J., Shi, J., Peng, Y., & Li, Y. (2017). Ingestion of Bt rice pollen does not reduce the survival or hypopharyngeal gland development of Apis mellifera adults. Environmental Toxicology and Chemistry, 36, 1243–1248.CrossRefPubMedGoogle Scholar
  45. Xue, J., Liang, G., Crickmore, N., Li, H., He, K., Song, F., Feng, X., Huang, D., & Zhang, J. (2008). Cloning and characterization of a novel Cry1A toxin from bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteran insects. FEMS Microbiology Letters, 280, 95–101.CrossRefPubMedGoogle Scholar
  46. Yang, N. W., Zang, L. S., Wang, S., Guo, J. Y., Xu, H. X., Zhang, F., & Wan, F. H. (2014). Biological pest management by predators and parasitoids in the greenhouse vegetables in China. Biological Control, 68, 92–102.CrossRefGoogle Scholar
  47. Zhou, L., Fang, Y., & Yang, J. (1981). Investigation on artificial diet in Heliothis Armigera. Acta Entomologica Sinica, 24, 108–110.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Cotton Biology, Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangPeople’s Republic of China
  2. 2.Department of EntomologyUniversity of Agriculture, Water and Marine Sciences (LUAWMS)Uthal District Lasbella, BalochistanPakistan
  3. 3.University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Baghdad ul-jadeed CampusBahawalpurPakistan

Personalised recommendations