, Volume 45, Issue 4, pp 517–525 | Cite as

New invasion of Bemisia tabaci Mediterranean species in Brazil associated to ornamental plants

  • Letícia Aparecida de Moraes
  • Julio Massaharu Marubayashi
  • Valdir Atsushi Yuki
  • Murad Ghanim
  • Vinicius Henrique Bello
  • Bruno Rossitto De Marchi
  • Leonardo da Fonseca Barbosa
  • Laura M. Boykin
  • Renate Krause-Sakate
  • Marcelo Agenor Pavan


In Brazil, the first major invasion event of Bemisia tabaci was that of Middle East–Asia Minor 1 (MEAM1) species, formerly termed as B biotype, which commenced in the 1990s mainly by ornamental plants in São Paulo State. More than two decades after this invasion, the presence of the Mediterranean (MED) species of B. tabaci, formerly Q biotype, was reported in Rio Grande do Sul, the southernmost State of Brazil, and now in São Paulo and Paraná States, in southeastern Brazil. Specimens of whiteflies collected from commercial begonia, hydrangea, petunia and poinsettia greenhouses in São Paulo, and also from begonias and poinsettias collected in flower shops in Paraná, were all identified as belonging to MED species. Furthermore, the secondary endosymbionts Arsenophonus, Hamiltonella and Rickettsia of MED from São Paulo and Paraná were detected by PCR and their presence confirmed by sequencing and FISH analysis, and those results differed from MED detected in Rio Grande do Sul that harbored only Hamiltonella and Cardinium. Our results suggest a new MED invasion into Brazil and is associated with ornamental plants. The two MED populations are genetically different and suggest that they are separate invasions.


Whiteflies MEAM1 mtCOI Endosymbionts 



This work was financially supported by FAPESP (process number 2014/21773-0) and CAPES. MAP and RKS are CNPq fellowship. This work was supported by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia


  1. Ahmed, M. Z., Shatters, R. G., Ren, S. X., Jin, G. H., Mandour, N. S., & Qiu, B. L. (2009). Genetic distinctions among the Mediterranean and Chinese populations of Bemisia tabaci Q biotype and their endosymbiont Wolbachia populations. Journal of Applied Entomology, 133(9–10), 733–741.CrossRefGoogle Scholar
  2. Barbosa, L. F., Yuki, V. A., Marubayashi, J. M., De Marchi, B. R., Perini, F. L., Pavan, M. A., & Krause-Sakate, R. (2015). First report of Bemisia tabaci Mediterranean (Q biotype) species in Brazil. Pest Management Science, 71(4), 501–504.CrossRefGoogle Scholar
  3. Bethke, J., Byrne, F., Hodges, G., McKenzie, C., & Shatters, R. (2009). First record of the Q biotype of the sweetpotato whitefly, Bemisia tabaci, in Guatemala. Phytoparasitica, 37, 61–64.CrossRefGoogle Scholar
  4. Bing, X. L., Ruan, Y. M., Rao, Q., Wang, X. W., & Liu, S. S. (2013). Diversity of secondary endosymbionts among different putative species of the whitefly Bemisia tabaci. Insect Science, 20, 194–206.CrossRefPubMedGoogle Scholar
  5. Bondar, G. (1928). Relatório. Boletim do Laboratório de Patologia Vegetal, 4, 39–46.Google Scholar
  6. Bosco, D., Loria, A., Sartor, C., & Cenis, J. L. (2006). PCR-RFLP identification of Bemisia tabaci biotypes in the Mediterranean Basin. Phytoparasitica, 34(3), 243.CrossRefGoogle Scholar
  7. Boykin, L. M., & De Barro, P. J. (2014). A practical guide to identifying members of the Bemisia tabaci species complex: And other morphologically identical species. Frontiers in Ecology and Evolution, 2(45). doi: 10.3389/fevo.2014.00045.
  8. Chiel, E., Gottlieb, Y., Zchori-Fein, E., Mozes-Daube, N., Katzir, N., Inbar, M., & Ghanim, M. (2007). Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bulletin of Entomological Research, 97, 407–413.CrossRefPubMedGoogle Scholar
  9. Czosnek, H., Ghanim, M., Morin, S., Rubinstein, G., Fridman, V., & Zeidan, M. (2001). Whiteflies: Vectors, and victims (?), of geminiviruses. Advances in Virus Research, 57, 291–322.CrossRefPubMedGoogle Scholar
  10. Dalton, R. (2006). The Christmas invasion. Nature, 443, 898–900.CrossRefPubMedGoogle Scholar
  11. De Barro, P. J., Scott, K. D., Graham, G. C., Lange, C. L., & Schutze, M. K. (2003). Isolation and characterization of microsatellite loci in Bemisia tabaci. Molecular Ecology Notes, 3(1), 40–43.CrossRefGoogle Scholar
  12. De Barro, P. J., Liu, S. S., Boykin, L. M., & Dinsdale, A. B. (2011). Bemisia tabaci: A statement of species status. Annual Review of Entomology, 56, 1–19.CrossRefPubMedGoogle Scholar
  13. Duffy, S., & Holmes, E. C. (2007). Multiple introductions of the old world begomovirus tomato yellow leaf curl virus into the new world. Applied and Environmental Microbiology, 73(21), 7114–7117.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Everett, K. D., Thao, M., Horn, M., Dyszynski, G. E., & Baumann, P. (2005). Novel chlamydiae in whiteflies and scale insects: Endosymbionts ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain elm. International Journal of Systematic and Evolutionary Microbiology, 55(4), 1581–1587.CrossRefPubMedGoogle Scholar
  15. Frohlich, D. R., Torres-Jerez, I., Bedford, I. D., Markham, P. G., & Brown, J. K. (1999). A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Molecular Ecology, 8(10), 1683–1691.CrossRefPubMedGoogle Scholar
  16. Gilbertson, R. L., Batuman, O., Webster, C. G., & Adkins, S. (2015). Role of the insect Supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annual Review of Virology, 2, 67–93.CrossRefPubMedGoogle Scholar
  17. Gottlieb, Y., Ghanim, M., Chiel, E., Gerling, D., Portnoy, V., Steinberg, S., & Kontsedalov, S. (2006). Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Applied and Environmental Microbiology, 72(5), 3646–3652.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gottlieb, Y., Ghanim, M., Gueguen, G., Kontsedalov, S., Vavre, F., Fleury, F., & Zchori-Fein, E. (2008). Inherited intracellular ecosystem: Symbiotic bacteria share bacteriocytes in whiteflies. The FASEB Journal, 22(7), 2591–2599.CrossRefPubMedGoogle Scholar
  19. Gottlieb, Y., Zchori-Fein, E., Mozes Daube, N., Kontsedalov, S., Skaljac, M., Brumin, M., Sobol, I., Czosnek, H., Vavre, F., Fleury, F., & Ghanim, M. (2010). The transmission efficiency of Tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. Journal of Virology, 84, 9310–9317.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Grille, G., Gauthier, N., Buenahora, J., Basso, C., & Bonato, O. (2011). First report of the Q biotype of Bemisia tabaci in Argentina and Uruguay. Phytoparasitica, 39(3), 235–238.CrossRefGoogle Scholar
  21. Gueguen, G., Vavre, F., Gnankine, O., Peterschmitt, M., Charif, D., Chiel, E., & Fleury, F. (2010). Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Molecular Ecology, 19(19), 4365–4376.CrossRefPubMedGoogle Scholar
  22. Hadjistylli, M., Roderick, G. K., Brown, J. K., & Zhang, Y. (2016) Global population structure of a worldwide pest and virus vector: Genetic diversity and population history of the Bemisia tabaci sibling species group. PLOS ONE, 11(11), e0165105. doi:Google Scholar
  23. Heddi, A., Grenier, A. M., Khatchadourian, C., Charles, H., & Nardon, P. (1999). Four intracellular genomes direct weevil biology: Nuclear, mitochondrial, principal endosymbiont, and Wolbachia. Proceedings of the National Academy of Sciences, 96(12), 6814–6819.CrossRefGoogle Scholar
  24. Horowitz, A. R., & Ishaaya, I. (2014). Dynamics of biotypes B and Q of the whitefly Bemisia tabaci and its impact on insecticide resistance. Pest Management Science, 70, 1568–1572. doi: 10.1002/ps.3752.CrossRefPubMedGoogle Scholar
  25. Horowitz, A. R., Kontsedalov, S., Khasdan, V., & Ishaaya, I. (2005). Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology, 58(4), 216–225.CrossRefPubMedGoogle Scholar
  26. Kanakala, S., & Ghanim, M. (2015). Advances in the genomics of the whitefly Bemisia tabaci: An insect Pest and a virus vector. In Short Views on Insect Genomics and Proteomics (pp. 19–40). Springer international publishing.
  27. Katoh, K., & Toh, H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics, 9(4), 286–298.CrossRefPubMedGoogle Scholar
  28. Kliot, A., Cilia, M., Czosnek, H., & Ghanim, M. (2014). Implication of the bacterial endosymbiont rickettsia spp. in interactions of the whitefly Bemisia tabaci with Tomato yellow leaf curl virus. Journal of Virology, 88(10), 5652–5660.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kontsedalov, S., Abu-Moch, F., Lebedev, G., Czosnek, H., Horowitz, A. R., & Ghanim, M. (2012). Bemisia tabaci biotype dynamics and resistance to insecticides in Israel during the years 2008–2010. Journal of Integrative Agriculture, 11(2), 312–320.CrossRefGoogle Scholar
  30. Li, M., Hu, J., Xu, F. C., & Liu, S. S. (2010). Transmission of Tomato Yellow Leaf Curl Virus by two invasive biotypes and a Chinese indigenous biotype of the whitefly Bemisia tabaci. International Journal of Pest Management, 56(3), 275–280.CrossRefGoogle Scholar
  31. Lourenção, A. L., & Nagai, H. (1994). Surtos populacionais de Bemisia tabaci no Estado de São Paulo. Bragantia, 53(1), 53–59.CrossRefGoogle Scholar
  32. Martinez-Carrillo, J., & Brown, J. K. (2007). First report of the Q biotype of Bemisia tabaci in southern Sonora, Mexico. Phytoparasitica, 35, 282–284.CrossRefGoogle Scholar
  33. Marubayashi, J. M., Yuki, V. A., Rocha, K. C. G., Mituti, T., Pelegrinotti, F. M., Ferreira, F. Z., & Krause-Sakate, R. (2013). At least two indigenous species of the Bemisia tabaci Complex are present in Brazil. Journal of Applied Entomology, 137(1–2), 113–121.CrossRefGoogle Scholar
  34. Marubayashi, J. M., Kliot, A., Yuki, V. A., Rezende, J. A. M., Krause-Sakate, R., Pavan, M. A., & Ghanim, M. (2014). Diversity and localization of bacterial endosymbionts from whitefly species collected in Brazil. PloS One, 9(9), e108363.CrossRefPubMedPubMedCentralGoogle Scholar
  35. McKenzie, C. L., & Lance S. Osborne, L. S. (2017). Bemisia tabaci MED (Q biotype) (Hemiptera: Aleyrodidae) in Florida is on the move to residential landscapes and may impact open-field agriculture. Florida Entomologist, 100(2), 481–484.CrossRefGoogle Scholar
  36. Muyzer, G., Hottentrager, S., Teske, A., & Wawer, C. (1996). Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA - a new molecular approach to analyze the genetic diversity of mixed microbial communities. Microbiology Ecology Manegement, 3.4.4, 1–23.Google Scholar
  37. Nauen, R., & Denholm, I. (2005). Resistance of insect pests to neonicotinoid insecticides: Current status and future prospects. Archives of Insect Biochemistry and Physiology, 58(4), 200–215.CrossRefPubMedGoogle Scholar
  38. Parrella, G., Nappo, A. G., Manco, E., Greco, B., & Giorgini, M. (2014). Invasion of the Q2 mitochondrial variant of Mediterranean Bemisia tabaci in southern Italy: Possible role of bacterial endosymbionts. Pest Management Science, 70(10), 1514–1523.CrossRefPubMedGoogle Scholar
  39. Rambaut, A. (2012). FigTree v1. 4. Molecular evolution, phylogenetics and epidemiology. Edinburgh: University of Edinburgh, Institute of Evolutionary Biology.
  40. Ribeiro, S. G., De Ávila, A. C., Bezerra, I. C., Fernandes, J. J., Faria, J. C., Lima, M. F., & Zerbini, F. M. (1998). Widespread occurrence of tomato geminiviruses in Brazil, associated with the new biotype of the whitefly vector. Plant Disease, 82(7), 830–830.CrossRefGoogle Scholar
  41. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Skaljac, M., Zanic, K., Ban, S. G., Kontsedalov, S., & Ghanim, M. (2010). Co-infection and localization of secondary symbionts in two whitefly species. BMC Microbiology, 10(1), 142.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Škaljac, M., Kostanjšek, R., & Zanic, K. (2012). The presence of Wolbachia in Tuta absoluta (Lepidoptera: Gelechiidae) populations from coastal Croatia and Montenegro. African Entomology, 20(1), 191–194.CrossRefGoogle Scholar
  44. Tay, W. T., Elfekih, S., Polaszek, A., Court, L. N., Evans, G. A., Gordon, K. H. J., & De Barro, P. J. (2017). Novel molecular approach to define pest species status and tritrophic interactions from historical Bemisia specimens. Scientific Reports, 7, 429.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Thao, M. L., & Baumann, P. (2004). Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Applied and Environmental Microbiology, 70(6), 3401–3406.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Weeks, A. R., Velten, R., & Stouthamer, R. (2003) Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proceedings of the Royal Society B: Biological Sciences, 270(1526), 1857–1865.Google Scholar
  47. Xu, J., De Barro, P. J., & Liu, S. S. (2010). Reproductive incompatibility among genetic groups of Bemisia Tabaci supports the proposition that the whitefly is a cryptic species complex. Bulletin of Entomological Research, 100, 359–366.CrossRefPubMedGoogle Scholar
  48. Zambrano, K., Carballo, O., Geraud, F., Chirinos, D., Fernández, C., & Marys, E. (2007). First report of tomato yellow leaf curl virus in Venezuela. Plant Disease, 91(6), 768–768.CrossRefGoogle Scholar
  49. Zchori-Fein, E., & Brown, J. K. (2002). Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Annals of the Entomological Society of America, 95(6), 711–718.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Letícia Aparecida de Moraes
    • 1
  • Julio Massaharu Marubayashi
    • 1
  • Valdir Atsushi Yuki
    • 2
  • Murad Ghanim
    • 3
  • Vinicius Henrique Bello
    • 1
  • Bruno Rossitto De Marchi
    • 1
  • Leonardo da Fonseca Barbosa
    • 4
  • Laura M. Boykin
    • 5
  • Renate Krause-Sakate
    • 1
  • Marcelo Agenor Pavan
    • 1
  1. 1.São Paulo State University (UNESP), School of AgricultureBotucatuBrazil
  2. 2.Instituto Agronômico de Campinas, Centro de FitossanidadeCampinasBrazil
  3. 3.Department of EntomologyThe Volcani Center, Institute of Plant ProtectionBet DaganIsrael
  4. 4.Instituto Federal do Sudeste de Minas GeraisPombaBrasil
  5. 5.ARC Centre of Excellence in Plant Energy Biology and School of Chemistry and BiochemistryThe University of Western AustraliaPerthAustralia

Personalised recommendations