, Volume 43, Issue 5, pp 657–667 | Cite as

Integrating pesticides and predatory mites in soft fruit crops



Incorporation of predatory mites (Phytoseiidae) as biological control agents in soft fruit integrated pest management (IPM) programmes requires understanding of the interactions between environment, other organisms and crop management practices. This knowledge is dispersed among commercial online databases and peer reviewed papers and can be contradictory or difficult to access and interpret.

The review brings together findings from databases and peer reviewed laboratory, field and semi-field studies of pesticide toxicity and persistence to soft fruit phytoseiid mites and also considers resistance, spray programmes and how these interact with species sensitivity, alternative food availability and plant structure.

Predictably, acaricides and insecticides are the most toxic pesticides to phytoseiid mites, but their toxicity varies. Few fungicides are harmful, but data for many is lacking; it is very scarce for herbicides. There is virtually no data on tank mixes of pesticides applied to many soft fruit crops. Persistence of pesticides varies so release times for predatory mites after application range from a few days to several weeks and some of the most toxic active ingredients are not always the most persistent. Phytoseiid species vary in susceptibility to pesticides and in some populations resistance has occurred. Interactions with the environment are more difficult to define, but fungicides, for example, may reduce alternative food items whilst plant architecture may offer phytoseiid mites protection from spray residues.

This review provides a timely synopsis to inform future research needs and provides practical guidance to enable better management of predatory mites in soft fruit crops.


IPM predatory mites pesticide Phytoseiidae soft fruit compatibility 



This study was funded by the Horticultural Development Company.

Supplementary material

12600_2015_485_MOESM1_ESM.doc (110 kb)
Table 4 supplementary material (DOC 109 kb)
12600_2015_485_MOESM2_ESM.doc (94 kb)
Table 5 supplementary material (DOC 93.5 kb)
12600_2015_485_MOESM3_ESM.doc (67 kb)
Table 6 supplementary material (DOC 67 kb)


  1. Agnello, A. M., Reissig, W. H., Kovach, J., & Nyrop, J. P. (2003). Integrated apple pest management in New York State using predatory mites and selective pesticides. Agriculture Ecosystems and Environment, 9, 183–195.CrossRefGoogle Scholar
  2. Anber, H. A. I., & Overmeer, W. P. J. (1988). Resistance to organophosphates and carbamates in the predacious mite Amblyseius potentillae (Garman) due to insensitive acetylcholinesterase. Pesticide Biochemistry and Physiology, 319, 91–98.CrossRefGoogle Scholar
  3. Argolo, P. S., Jacas, J. A., & Urbaneja, A. (2013). Comparative toxicity of pesticides in three phytoseiid mites with different life-style occurring in citrus: Euseius stipulatus, Neoseiulus californicus and Phytoseiulus persimilis. Experimental and Applied Acarology, 62, 33–46.CrossRefPubMedGoogle Scholar
  4. Auger, P., Kreiter, S., Mattioda, H., & Duriatti, A. (2004). Side effects of mancozeb on Typhlodromus pyri (Acari: Phytoseiidae) in vineyards: results of multi-year field trials and a laboratory study. Experimental and Applied Acarology, 33, 203–213.CrossRefPubMedGoogle Scholar
  5. Bakker, F. M., & Jacas, J. A. (1995). Pesticides and phytoseiid mites: strategies for risk assessment. Ecotoxicology and Environmental Safety, 32, 58–67.CrossRefPubMedGoogle Scholar
  6. Biobest (2013) Biobest sustainable crop management. Accessed 09 Oct 2013.
  7. Blommers, L. H. M. (1994). Integrated pest management in European apple orchards. Annual Reviews of Entomology, 39, 213–241.CrossRefGoogle Scholar
  8. Bonafos, R., Vigues, V., Serrano, E., & Auger, P. (2008). Resistance monitoring to deltamethrin and chlorpyriphos-ethyl in 13 populations of Typhlodromus pyri Scheuten (Acari: Phytoseiidae) from vineyards in the southwest of France. Crop Protection, 27, 3–5.CrossRefGoogle Scholar
  9. Cheng, X., Zheng, W., Zhao, W., & Zhang, H. (2013). Toxicity test of 12 pesticides against predatory mites. Plant Protection, 39, 184–187.Google Scholar
  10. Duchovskiene, L., Raudonis, L., Karkleliene, R., & Starkute, R. (2009). Toxicity of insecticides to predatory mite Phytoseiulus persimilis in cucumber. Sodininkyste ir Daržininkyste, 28, 41–46.Google Scholar
  11. Duso, C., Pozzebon, A., Baldessari, M., Girolami, V., Angeli, G., Tirello, P., Lorenzon, M., Malagnini, V., & Pellizzari, G-S. (2011). Availability of alternative foods can influence the impact of pesticides on predatory mites (Acari): a summary of the evidence. Zoosymposia, 6, 124–130.Google Scholar
  12. Duso, C., Fanti, M., & Pozzebon, A. (2009). Is the predatory mite Kampimodromus aberrans a candidate for the control of phytophagous mites in European apple orchards? BioControl, 54, 369–382.CrossRefGoogle Scholar
  13. Gerson, U. & Weintraub, P. G. (2007). Mites for the control of pests in protected cultivation. Pest Management Science, 63, 658–676.CrossRefPubMedGoogle Scholar
  14. Hardman, J. M., Rogers, R. E. L., Nyrop, J. P., & Frisch, T. (1991). Effect of pesticide applications on abundance of European red mite (Acari: Tetranychidae) and Typholodromus pyri (Acari: Phytoseiidae) in Nova Scotian apple orchards. Journal of Economic Entomology, 84, 570–580.CrossRefGoogle Scholar
  15. Hassan, S. A. (1994). Activities of the IOBC/WPRS Working Group, Pesticides and Beneficial Organisms. In: Pesticides and Beneficial Organisms. (ed., Vogt H.), IOBC/WPRS Bulletin, 17, 1–5.Google Scholar
  16. Hoy, M. A., & Conley, J. (1987). Toxicity of pesticides to western predatory mite. California Agriculture, 41, 12–14.Google Scholar
  17. IPM impact (2013). IMP impact online compatibility database, Accessed 22 Nov 2013.
  18. Irigaray, F. JS-de-C., Zalom, F. G. & Thompson, P. B. (2007). Residual toxicity of acaricides to Galendromus occidentalis and Phytoseiulus persimilis reproductive potential. Biological Control, 40, 153–159.Google Scholar
  19. Irving, R. (2011). The identification of overwintering predatory mites in strawberry and cane fruit and investigation of on-farm production. HDC Final report. SF1152011.Google Scholar
  20. ISI Web of Knowledge platform (2014). Thomson Reuters.Google Scholar
  21. Jacas, J. A., & Garcia-Marı, F. (2001). Side-effects of pesticides on selected natural enemies occurring in citrus in Spain. IOBC/WPRS Bulletin, 24, 103–112.Google Scholar
  22. Jackson, G. J., & Ford, J. B. (1973). The feeding behaviour of Phytoseiulus persimilis (Acarina: Phytoseiidae), particularly as affected by certain pesticides. Annals of Applied Biology, 75, 165–171.CrossRefPubMedGoogle Scholar
  23. Kaplan, P., Yorulmaz, S., & Ay, R. (2012). Toxicity of insecticides and acaricides to the predatory mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). International Journal of Acarology, 38, 699–705.CrossRefGoogle Scholar
  24. Kim, S. S., & Paik, C. H. (1996). Comparative toxicity of fenpyroximate to the predatory mite, Amblyseius womersleyi Schicha and the Kanzawa spider mite, Tetranychus kanzawai, Kishida (Acarina: Phytoseiidae, Tetranychidae). Applied Entomology and Zoology, 31, 369–377.Google Scholar
  25. Kongchuensin, M., & Takafuji, A. (2006). Effects of some pesticides on the predatory mite, Neoseiulus longispinosus (Evans) (Gamasina: Phytoseiidae). Journal of Acarological Society of Japan, 15, 17–27.CrossRefGoogle Scholar
  26. Koppert (2013). Koppert biological systems. Accessed 09 October 2013.
  27. Kreiter, S., Auger, P. & Bonafos, R. (2010). Side effects of pesticides on phytoseiid mites in French vineyards and orchards: laboratory and field trials. Trends in Acarology: Proceedings of the 12th International Congress, 457-464.Google Scholar
  28. Lee, S. G., Hilton, S. A., Broadbent, A. B., & Kima, J.-H. (2002). Insecticide resistance in phytoseiid predatory mites, Phytoseiulus persimilis and Amblyseius cucumeris (Acarina: Phytoseiidae). Journal of Asia-Pacific Entomology, 5, 123–129.CrossRefGoogle Scholar
  29. Lee, S. G., Shipp, J. L., & Wang, K. (2001). Evaluation of two commercial strains of Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae) and laboratory-selected, pyrethroid-resistant and susceptible strains of Amblyseius fallacis (Garman) (Acarina: Phytoseiidae) for pesticide resistance on greenhouse cucumber. Journal of Asia-Pacific Entomology, 4, 165–169.CrossRefGoogle Scholar
  30. Lester, P. J., Thistlewood, H. M. A., & Harmsen, R. (1998). The effects of refuge size and number on acarine predator–prey dynamics in a pesticide-disturbed apple orchard. Journal of Applied Ecology, 35, 323–331.CrossRefGoogle Scholar
  31. Luff, M. L. (1983). The potential of predators for pest control. Agriculture Ecosystems and Environment, 10, 159–181.CrossRefGoogle Scholar
  32. Martinez-Rocha, L., Beers, E. H., & Dunley, J. E. (2008). Effect of pesticides on integrated mite management in Washington State. Journal of the Entomological Society of British Columbia, 105, 97–108.Google Scholar
  33. Miles, M., Kemmitt, G., & Valverde, P. (2006). Results from two years of field studies to determine Mancozeb based spray programmes with minimal impact on predatory mites in European vine cultivation. Communications in Agricultural and Applied Biological Sciences, 71, 285–293.PubMedGoogle Scholar
  34. Momen, F. M., & Amer, S. A. A. (1999). Effect of rosemary and sweet marjoram on three predacious mites of the family Phytoseiidae (Acari: Phytoseiidae). Acta Phytopathologica et Entomologica Hungarica, 34, 355–361.CrossRefGoogle Scholar
  35. Nyrop, J. P., Kain, D. P., Minns, J., & Agnello, A. (1995). Improving the success of transferring the mite predator Typholodromus pyri from one orchard to another. Proceedings of the New York State Horticultural Society, 140, 6–10.Google Scholar
  36. Onzo, A., Hanna, R., Zannou, I., Sabelis, M. W., & Yaninek, J. S. (2003). Dynamics of refuge use: diurnal, vertical migration by predatory and herbivorous mites within cassava plants. Oikos, 101, 59–69.CrossRefGoogle Scholar
  37. Onzo, A., Sabelis, M. W., & Hanna, R. (2010). Effects of ultraviolet radiation on predatory mites and the role of refuges in plant structures. Environmental Entomology, 39, 695–701.CrossRefPubMedGoogle Scholar
  38. Pascual-Ruiz, S., & Urbaneja, A. (2006). Lista de efectos secundarios de plaguicidas sobre fauna útil en cítricos. Levante Agrícola, 380, 186–191.Google Scholar
  39. Pozzebon, A., Ahmad, S., Tirello, P., Lorenzon, M., & Duso, C. (2014). Does pollen availability mitigate the impact of pesticides on generalist predatory mites? Biocontrol, 59(5), 585–596.CrossRefGoogle Scholar
  40. Pozzebon, A., Borgo, M., & Duso, C. (2010). The effects of fungicides on non-target mites can be mediated by plant pathogens. Chemosphere, 79, 8–17.CrossRefPubMedGoogle Scholar
  41. Pozzebon, A. & Duso, C. (2010). Pesticide side-effects on predatory mites: the role of trophic interactions. Trends in Acarology, Proceedings of the 12 th International Congress, 465-469.Google Scholar
  42. Provost, C., Coderre, D., Lucas, E., Chouinard, G., & Bostanian, N. J. (2005). Impact of intraguild predation and lambda-cyhalothrin on predation efficacy of three acarophagous predators. Pest Management Science, 61, 532–538.CrossRefPubMedGoogle Scholar
  43. Provost, C., Coderre, D., Lucas, E., Chouinard, G., & Bostanian, N. J. (2003). Impacts of a sublethal dose of lambda-cyhalothrin on phytophagous mite intraguild predators in apple orchards. Phytoprotection, 84, 105–114.CrossRefGoogle Scholar
  44. Rahman, T., Spafford, H., & Broughton, S. (2011). Single versus multiple releases of predatory mites combined with spinosad for the management of western flower thrips in strawberry. Crop Protection, 30, 468–475.CrossRefGoogle Scholar
  45. Raudonis, L., Survilienė, E., & Valiuškaitė, A. (2004). Toxicity of pesticides to predatory mites and insects in apple-tree site under field conditions. Environmental Toxicology, 19, 291–295.CrossRefPubMedGoogle Scholar
  46. Salman SY, Ay R. (2014). Effect of hexythiazox and spiromesifen resistance on the life cycle of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae). Experimental and Applied Acarology, 64, 245–252.Google Scholar
  47. San-Andres, V., Abad, R., Ansaloni, T., Aucejo, S., Belliure, B., Dembílio, O., Jacas, J. A., Pascual, S., Pina, T., Vanaclocha, P., Urbaneja, A., Mora, J., & Ripollés, J. L. (2006). Efectos secundarios sobre Euseius stipulatus de tratamientos cebo dirigidos al control de Ceratitis capitata. Phytoma España, 180, 38–45.Google Scholar
  48. Schmidt, R. A. (2014). Leaf structures affect predatory mites (Acari: Phytoseiidae) and biological control: a review. Experimental and Applied Acarology, 62, 1–17.CrossRefPubMedGoogle Scholar
  49. Schwartz, A. (1991). Laboratory evaluation of toxicity of registered pesticides to adult Amblyseius addoensis (Van der Merwe & Ryke) (Acari: Phytoseiidae). South African Journal for Enology and Viticulture, 12, 87–89.Google Scholar
  50. Simon, S., Sauphanor, B., & Lauri, P. E. (2007). Control of fruit tree pests through manipulation of tree architecture. Pest Technology, 1, 33–37.Google Scholar
  51. Solomon, M. G., Easterbrook, M. A., & Fitzgerald, J. D. (1993). Mite-management programmes based on organophosphate-resistant Typhlodromus pyri in UK apple orchards. Crop Protection, 12, 249–254.CrossRefGoogle Scholar
  52. Stavrinides, M. C., & Mills, N. J. (2009). Demographic effects of pesticides on biological control of Pacific spider mite (Tetranychus pacificus) by the western predatory mite (Galendromus occidentalis). Biological Control, 48, 267–273.CrossRefGoogle Scholar
  53. Steiner, M., & Enkegaard, E. (2002). Progress towards integrated pest management for thrips (Thysanoptera: Thripidae) in strawberries in Australia. Bulletin of IOBC/WPRS, 25, 253–256.Google Scholar
  54. Sterk, G., Hassan, S. A., Baillod, M., Bakker, F., Bigler, F., Blümel, S., Bogenschutz, H., Boller, E., Bromand, B., Brun, J., Calis, J. N. M., Coremans-Pelseneer, J., Duso, C., Garrido, A., Grove, A., Heimbach, U., Hokkanen, H., Jacas, J., Lewis, G., Moreth, L., Polgar, L., Roversti, L., Samsoe-Petersen, L., Sauphanor, B., Schaub, L., Staubli, A., Tuset, J. J., Vainio, A., van de Veire, M., Viggiani, G., Vinuela, E., & Vogt, H. (1999). Results of the seventh joint pesticide testing programme carried out by the IOBC/WPRS-Working Group ‘Pesticides and Beneficial Organisms’. BioControl, 44, 99–117.CrossRefGoogle Scholar
  55. Thompson, L. (2012). Pesticide impacts on beneficial species. Australian Government grape and Wine Research and development corp. Factsheet May, 2012, 1–7.Google Scholar
  56. Urbaneja, A., Pascual-Ruiz, S., Pina, T., Abad-Moyano, R., Vanaclocha, P., Monton, H., Dembilio, O., Castanera, P., & Jacas, J. A. (2008). Efficacy of five selected acaricides against Tetranychus urticae (Acari: Tetranychidae) and their side effects on relevant natural enemies occurring in citrus orchards. Pest Management Science, 64, 834–842.CrossRefPubMedGoogle Scholar
  57. Walde, S. J., Nyrop, J. P., & Hardman, J. M. (1992). Dynamics of Panonychus ulmi and Typhlodromus pyri: factors contributing to persistence. Experimental and Applied Acarology, 14, 261–291.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.East Malling ResearchKentUK
  2. 2.Syngenta Bioline Ltd. Telstar NurseryEssexUK

Personalised recommendations