, Volume 43, Issue 4, pp 565–575 | Cite as

Effect of selected synergists on insecticidal toxicity of deltamethrin and biochemical mechanisms on the field populations of tobacco caterpillar from Punjab, India

  • Prabhjot KaurEmail author
  • B. K. Kang


Spodoptera litura (Fabricius) is an important polyphagous and destructive pest worldwide causing heavy foliage damage to more than 115 species of host plants, and is exposed to insecticides throughout the year, resulting in the rapid development of resistance. Different population’s viz., susceptible Hoshiarpur (HSP), resistant Malerkotla (MAL) and deltamethrin selected strain (MAL-Sel) of S. litura collected from different locations were treated in the laboratory by leaf dip method with deltamethrin alone and in combination with different ratios of synergists like Piperonyl butoxide (PBO), Tri phenyl phosphate (TPP) and Diethyl maleate (DEM). When PBO, TPP and DEM at ratio of 1:4 were used as synergist in the HSP, MAL and MAL-Sel strain, the synergistic ratio was 3.91, 3.66 and 3.31 for susceptible population (HSP), 8.24, 7.67 and 6.85 for resistant population (MAL), 21.30, 23.67 and 18.26 for MAL-Sel strain selected after 10 generations, respectively. The results obtained in the present study revealed that PBO at 1:4 had highest synergistic effect on the resistant population MAL (8.24 fold) whereas, PBO at 1:6 showed highest synergistic effect i.e. 4.78 folds on the susceptible (HSP) population followed by TPP and DEM (1:4). However, the stronger synergism of TPP (1:4) was 23.67 fold followed by PBO (21.30 fold) and DEM (18.26) at 1:4 in case of MAL-Sel strain which suggests the involvement of esterases and monooxygenases. The resistance to the AChE targeted insecticide in this pest depended on the target insensitivity and the enhanced activity of MFO and esterase. Thus, the cross resistance between pyrethroids and the AChE targeted insecticides could be resulted from the enhanced activity of MFO and esterase.


Spodoptera litura deltamethrin synergists PBO TPP DEM leaf dip method MFO Esterase Acetylcholinesterase quinalphos susceptible Hoshiarpur population (HSP) resistant Malerkotla population (MAL) MAL Selected strain (MAL-Sel) 



The authors are thankful to the Professor and Head, Department of Entomology, PAU, Ludhiana for providing the necessary research facilities.


  1. Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267.CrossRefGoogle Scholar
  2. Ahmad, M., Arif, M. I., & Ahmad, M. (2007a). Occurrence of insecticide resistance in field populations of Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Crop Protection, 26, 809–817.CrossRefGoogle Scholar
  3. Ahmad, M., Sayyed, A. H., Crickmore, N., & Saleem, M. A. (2007b). Genetics and mechanism of resistance to deltamethrin in a field population of Spodoptera litura (Lepidoptera: Noctuidae). Pest Management Sciences, 63, 1002–1010.CrossRefGoogle Scholar
  4. Anon. (1990). Proposed susceptibility tests, IRAC method No. 7,” Bull Eur Plant Protect Org, 20, pp. 399-400. (IRAC;
  5. Cheema H K (2013) Evaluation of insecticide resistance profile in Spodoptera litura (Fabricius) populations through biological, biochemical and molecular diagnosis. Ph.D. dissertatioin. Punjab Agricultural University, Ludhiana, IndiaGoogle Scholar
  6. Clarke, S. E., Brealey, C. J., & Gibson, G. G. (1989). Cytochrome P-450 in the housefly: induction, substrate specificity and comparison to three rat hepatic isoenzymes. Xenobiotica, 19, 1175–1180.PubMedCrossRefGoogle Scholar
  7. Daly, J. C., & Fisk, J. H. (1992). Inheritance of metabolic resistance to the synthetic pyrethroids in Australian Helicoverpa armigera (Lepidoptera, Noctuidae). Bulletin of Entomological Research, 82, 5–12.CrossRefGoogle Scholar
  8. Finney, D. J. (1971). Probit analysis. Cambridge, UK: Cambridge University Press.Google Scholar
  9. Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for Agricultural Research (2nd ed., p. 680). New York: John Willey and Sons.Google Scholar
  10. Han, Z., Moores, G., Devonshire, A., & Denholm, I. (1998). Association between biochemical markers and insecticide resistance in the cotton aphid, Aphis gossypii. Pesticide Biochemistry and Physiology, 62, 164–171.CrossRefGoogle Scholar
  11. Hansen, L. G., & Hodgson, E. (1971). Biochemical characteristics of insect microsomes N- and O-demethylation. Biochemistry Pharmacology, 20, 1569–1573.CrossRefGoogle Scholar
  12. Huang, S. J., & Han, Z. J. (2007). Mechanisms for multiple resistances in field populations of common cutworm, Spodoptera litura (Fabricius) in China. Pesticide Biochemistry and Physiology, 87, 14–22.CrossRefGoogle Scholar
  13. Ishaaya, I., Yablonski, S., & Horowitz, A. R. (1995). Comparative toxicity of two ecdysteroid agonists, RH-2485 and RH-5992, on susceptible and pyrethroid-resistant strains of the Egyptian cotton leafworm, Spodoptera littoralis. Phytoparasitica, 23, 139–145.CrossRefGoogle Scholar
  14. Kang, C. Y., Wu, G., & Miyata, T. (2006). Synergism of enzyme inhibitors and mechanisms of insecticide resistance in Bemisia tabaci (Gennadius) (Hom., Aleyrodidae). Journal of Applied Entomology, 130, 377–385.CrossRefGoogle Scholar
  15. Kranthi, K. R. (2005). Insecticide Resistance-Monitoring, Mechanisms and Management Manual, pp. 150, CICR, Nagpur, India and ICAC, Washington.Google Scholar
  16. Kranthi, K. R., Jadhav, D. R., Kranthi, S., Wanjari, R. R., Ali, S. S., & Russell, D. A. (2002). Insecticide resistance in five major insect pests of cotton in India. Crop Protection, 21, 449–460.CrossRefGoogle Scholar
  17. Li, F., & Han, Z. (2002). Purification and characterization of acetylcholinesterase from cotton aphid, Aphis gossypii Glover. Archives of Insect Biochemistry and Physiology, 51, 37–45.PubMedCrossRefGoogle Scholar
  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin-phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMedGoogle Scholar
  19. Mukherjee, A. B., & Srivastava, V. S. (1970). Bioassay of the relative toxicity of some pesticides to the larvae of Spodoptera litura (Fabricius) (Noctuidae: Lepidoptera). Indian Journal of Entomology, 32, 251–255.Google Scholar
  20. Nair, M. R. G. K. (1975). Insects and mites of crop pests in India (Istth ed., p. 158). New Delhi: Indian Council of Agricultural Research.Google Scholar
  21. Oppenoorth, F. J., & Welling, W. (1976). Biochemistry and physiology of resistance. pp. 507. In C. F. Wilkinson (Ed.), Insect Biochemistry and Physiology. New York: Plenum.Google Scholar
  22. Prabhaker, N., Coudrit, D. L., & Toscano, N. C. (1988). Effects of synergists on organophosphate and permethrin resistance in sweet potato whitefly (Homoptera: Aleyrididae). Journal of Economic Entomology, 81, 34–39.CrossRefGoogle Scholar
  23. Qin, H., Ye, Z., Huang, S., Ding, J., & Luo, R. (2004). The correlations of the different host plants with preference level, life duration and survival rate of Spodoptera litura Fabricius. Chinese Journal of eco-agriculture, 12, 40–42.Google Scholar
  24. Radhika, P., Subbaratnam, G. V., & Punnaiah, K. C. (2005). Dermal and oral toxicity of profenofos on relatively resistant population of Spodoptera litura F. Journal of Plant Protection and Environment, 2, 4–11.Google Scholar
  25. Sayyed, A. H., Ahmad, M., & Saleem, M. A. (2008). Cross-resistance and genetics of resistance to indoxacarb in Spodoptera litura (Lepidoptera: Noctuidae). Journal of Economic Entomology, 101, 472–479.PubMedCrossRefGoogle Scholar
  26. Sayyed, A. H., Attique, M. N. R., Khaliq, A., & Wright, D. J. (2005). Inheritance of resistance and cross-resistance to deltamethrin in Plutella xylostella (Lepidoptera: Plutallidae) from Pakistan. Pest Management Sciences, 61, 636–642.CrossRefGoogle Scholar
  27. Shad, S. A., Sayyed, A. H., & Saleem, M. A. (2010). Cross-resistance, mode of inheritance and stability of resistance to emamectin in Spodoptera litura Fab. (Lepidoptera: Noctuidae). Pest Management Sciences, 66, 839–846.Google Scholar
  28. Srivastava, B. K., & Joshi, H. C. (1965). Occurrence of resistance to BHC in Prodenia litura Fab. (Lepidoptera: Noctuidae). Indian Journal of Entomology, 27, 102–104.Google Scholar
  29. Verma, A. N., Verma, N. D., & Singh, R. (1971). Chemical control of Prodenia litura Fab. (Lepidoptera: Noctuidae) on cauliflower. Indian Journal of Horticulture, 28, 240–243.Google Scholar
  30. Whalon, M. E., Mota-Sanchez, D., & Hollingworth, R. M. (2008). Analysis of global pesticide resistance in arthropods. In M. E. Whalon, D. Mota-Sanchez, & R. M. Hollingworth (Eds.), Global Pesticide Resistance in Arthropods (pp. 5–31). Wallingford, United Kingdom: CABI International.CrossRefGoogle Scholar
  31. Yang, M. L., Zhang, J. Z., Zhu, K. Y., Xuan, T., Liu, X. J., Guo, Y. P., & Ma, E. B. (2009). Mechanism of organophosphate resistance in a field population of oriental migratory locust, Locusta migratoria manilensis (Meyen). Archives of Insect Biochemistry and Physiology, 71, 3–15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Entomology, College of AgriculturePAULudhianaIndia

Personalised recommendations