Advertisement

Phytoparasitica

, Volume 43, Issue 4, pp 485–499 | Cite as

Integrating resistance and tolerance for improved evaluation of sorghum lines against Fusarium stalk rot and charcoal rot

  • Y. M. A. Y. Bandara
  • R. Perumal
  • C. R. Little
Article

Abstract

Stalk rots are major fungal diseases of sorghum [Sorghum bicolor (L.) Moench] worldwide and cause significant economic loss. Conventionally, the length of stem lesions, produced by Fusarium thapsinum (FT; Fusarium stalk rot) and Macrophomina phaseolina (MP; charcoal rot), are measured to assess the degree of plant resistance. Genotypes with shorter lesion length (LL) are more resistant and expected to exhibit improved yield compared to susceptible genotypes. However, recent reports reveal inconsistent correlations between yield and LL, demonstrating the inadequacy of LL to predict yield under disease pressure. In this study, a new resistance-tolerance index (Index RT ) was used to rank 36 advanced sorghum male sterility maintainers (B-lines). Index RT was formulated in such a way that a lower index value indicates increased disease resistance and reduced yield loss (i.e., greater tolerance) and vice-versa after infection. When ranked by LL, ARCH11035B, -11025B and -11011B were the best performing lines against Fusarium stalk rot, whereas the same lines ranked 1, 3, and 9, respectively, using Index RT . Similarly, ARCH11018B, -11010B and -11014B had the lowest LLs respectively against charcoal rot, whereas the same lines were ranked 1, 4, and 30, respectively, based upon Index RT . The LL- or Index RT -dependent ranking differences of certain lines such as FT-inoculated ARCH11011B and MP-inoculated ARCH11014B indicated the effectiveness of deploying Index RT for better evaluating sorghum lines against stalk rot diseases. There was no significant correlation between LL and Index RT , revealing the independence of the two ranking systems. It is anticipated that this novel stalk rot screening procedure could be deployed by sorghum breeders for improved selection of parental lines.

Keywords

Sorghum bicolor Fusarium thapsinum Stalk Rot Macrophomina phaseolina Charcoal Rot Disease Resistance Disease Tolerance 

Notes

Acknowledgements

The authors wish to thank the Kansas Grain Sorghum Commission, United Sorghum Checkoff Program, and the K-State Center for Sorghum Improvement for funding this work. This paper is Contribution No. KAES 13-377-J from the Kansas Agricultural Experiment Station, Manhattan.

References

  1. Ahmed, H. U., Mundt, C. C., Hoffer, M. E., & Coakley, S. M. (1996). Selective influence of wheat cultivars on pathogenicity of Mycosphaerella graminicola (Anamorph Septoria tritici). Phytopathology, 86, 454–458.CrossRefGoogle Scholar
  2. Alexander, H. M. (1992). Evolution of disease resistance in natural plant populations. In R. S. Fritz & E. Simms (Eds.), Plant Resistance to Herbivores and Pathogens (pp. 326–344). Chicago, IL, USA: Univ. of Chicago Press.Google Scholar
  3. Anahosur, K. H., & Patil, S. H. (1982). Some promising sources of resistance to charcoal rot of sorghum. Sorghum Newsletter, 25, 118.Google Scholar
  4. Araus, J. L., Slafer, G. A., Reynolds, M. P., & Royo, C. (2002). Plant breeding and water relations in C3 cereals: what should we breed for? Annals of Botany London, 89, 925–940.CrossRefGoogle Scholar
  5. Assefa, Y., Staggenborg, S. A., & Prasad, P. V. V. (2010). Grain sorghum water requirement and responses to drought stress: A review. Plant Management Network. doi: 10.1094/CM-2010-1109-01-RV.Google Scholar
  6. Boyer, J. S. (1982). Plant productivity and environment. Science, 218, 443–448.PubMedCrossRefGoogle Scholar
  7. Caldwell, R. M., Schafer, J. F., Compton, L. E., & Patterson, F. L. (1958). Tolerance to cereal leaf rusts. Science, 128, 714–15.PubMedCrossRefGoogle Scholar
  8. Clarke, D. D. (1986). Tolerance of parasites and disease in plants and its significance in host-parasite interactions. Advances in Plant Pathology, 5, 161–197.Google Scholar
  9. Das, I. K., Prabhakar, & Indira, S. (2008). Role of stalk-anatomy and yield parameters in development of charcoal rot caused by Macrophomina phaseolina in winter sorghum. Phytoparasitica, 36, 199–208.CrossRefGoogle Scholar
  10. Duncan, R. R. (1983). Anthracnose-Fusarium disease complex on sorghum in southeastern USA. Sorghum Newsletter, 26, 121–122.Google Scholar
  11. Eastin, J. D., Petersen, C. L., Zavala-Garcia, F., Dhopte, A., Verma, P. K., Ounguela, V. B., Wit, M. W., Hernandez, V. G., Munoz, M. L., Gerik, T. J., Gandoul, G. I., Hovney, M. R. A., & Onofre, L. M. (1999). Potential heterosis associated with developmental and metabolic processes in sorghum and maize. In J. G. Coors & S. Pandey (Eds.), The Genetics and Exploitation of Heterosis in Crops (pp. 205–229). Madison, WI, USA: ASA, CSSA, and SSSA Press.Google Scholar
  12. Edmunds, L. K. (1964). Combined relation of plant maturity, temperature and soil moisture to charcoal stalk rot development in grain sorghum. Phytopathology, 54, 514–517.Google Scholar
  13. Edmunds, L. K., & Zummo, N. (1975). Sorghum Diseases in the United States and Their Control. USDA Handout No. 468. Washington, DC: U.S. Gov. Print. Office.Google Scholar
  14. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.PubMedCrossRefGoogle Scholar
  15. Hassan, M. H., Salam, M. A., & Arsan, M. R. (1996). Influence of certain factors on severity of stalk rot disease of grain sorghum in Upper Egypt. Assiut Journal of Agricultural Sciences, 27, 179–189.Google Scholar
  16. Hundekar, A. R., & Anahosur, K. H. (1994). Pathogenicity of fungi associated with sorghum stalk rot. Karnataka Journal of Agricultural Sciences, 7, 291–295.Google Scholar
  17. Ilyas, M. B., Ellis, M. A., & Sinclair, J. B. (1976). Effect of soil fungicides on Macrophomina phaseolina sclerotium viability in soil and in soybean stem pieces. Phytopathology, 66, 355–359.CrossRefGoogle Scholar
  18. Islam, M. S., Haque, M. S., Islam, M. M., Mannan, E., Emdad, E. M., Halim, A., Hossen, Q. M. M., Hossain, M. Z., Ahmed, B., Rahim, S., Rahman, M. S., Alam, M. M., Hou, S., Wan, X., Saito, J. A., & Alam, M. (2012). Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics, 13, 493. doi: 10.1186/1471-2164-13-493.
  19. Jardine, D. (2006). Stalk Rots of Corn and Sorghum. USA: Agricultural Research Station and Cooperative Extension Service, Kansas State University.Google Scholar
  20. Khune, N. N., Kurhekar, D. E., Raut, J. G., & Wangikar, P. D. (1984). Stalk rot of sorghum caused by Fusarium moniliforme. Indian Phytopathology, 37, 316–319.Google Scholar
  21. Kover, P. K., & Schaal, B. A. (2002). Genetic variation for disease resistance and tolerance among Arabidopsis thaliana accessions. Proceedings of the National Academy of Sciences USA, 99, 11270–11274.CrossRefGoogle Scholar
  22. Leonard, K. J. (2006). Selection pressures and plant pathogens. Annals of the New York Academy of Sciences, 287, 207–222.CrossRefGoogle Scholar
  23. Leslie, J. F., Zeller, K. A., Lamprecht, S. C., Rheeder, J. P., & Marasas, F. O. (2005). Toxicity, pathogenicity and genetic differentiation of five species of Fusarium from sorghum and millet. Phytopathology, 95, 275–283.PubMedCrossRefGoogle Scholar
  24. McDowell, J. M., & Dangl, J. L. (2000). Signal transduction in the plant immune response. Trends in Biochemical Sciences, 25, 79–82.PubMedCrossRefGoogle Scholar
  25. Mah, K. M., Uppalapati, S. R., Tang, Y., Allen, S., & Shuai, B. (2012). Gene expression profiling of Macrophomina phaseolina infected Medicago truncatula roots reveals a role for auxin in plant tolerance against the charcoal rot pathogen. Physiological and Molecular Plant Pathology, 79, 21–30.CrossRefGoogle Scholar
  26. Maiti, R. K., & Bidinger, F. R. (1981). Growth and development of pearl millet plant. Bull. 6. Hyderabad, India: ICRISAT Press.Google Scholar
  27. Maman, N., Mason, S. C., Lyon, D. J., & Dhungana, P. (2004). Yield components of pearl millet and grain sorghum across environments in the Central Great Plains. Crop Science, 44, 2138–2145.CrossRefGoogle Scholar
  28. Maranville, J.W., & Clegg M.D. (1984). Morphological and physiological factors associated with stalk strength (pp. 111-118). In: G. Rosenberg (Eds.) Sorghum Root and Stalk Rots, a Critical Review. Proceedings of the Consultative Group Discussion on Research Needs and Strategies for Control of Root and Stalk Rot Diseases. 27 Nov - 2 Dec 1983, Bellagio, Italy. Patancheru, A.P. 502324, India: ICRISAT Press.Google Scholar
  29. McDonald, B. A., & Linde, C. (2002). The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica, 124, 163–180.CrossRefGoogle Scholar
  30. Mughogho, L.K. & Pande, S. (1984). Charcoal rot of sorghum (pp. 11-24). In: G. Rosenberg (Eds.) Sorghum Root and Stalk Rots, a Critical Review. Proceedings of the Consultative Group Discussion on Research Needs and Strategies for Control of Root and Stalk Rot Diseases. 27 Nov - 2 Dec 1983, Bellagio, Italy. Patancheru, A.P. 502324, India: ICRISAT Press.Google Scholar
  31. Nash, S. N., & Snyder, W. C. (1962). Quantitative estimations by plate counts of propagules of the bean rot Fusarium in field soils. Phytopathology, 73, 458–462.Google Scholar
  32. O’Donnell, K., & Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution, 7, 103–116.PubMedCrossRefGoogle Scholar
  33. O’Donnell, K., Kistler, H. C., Cigelnik, E., & Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America, 95, 2044–2049.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Price, J. S., Bever, J. D., & Clay, K. (2004). Genotype, environment, and genotype by environment interactions determine quantitative resistance to leaf rust (Coleosporium asterum) in Euthamia graminifolia (Asteraceae). New Phytologist, 162, 729–743.CrossRefGoogle Scholar
  35. Reed, J. E., Partridge, J. E., & Nordquist, P. T. (1983). Fungal colonization of stalks and roots of grain sorghum during the growing season. Plant Disease, 64, 417–420.CrossRefGoogle Scholar
  36. Rosenow, D.T. (1984). Breeding for resistance to root and stalk rots in Texas (pp. 209-217). In: G. Rosenberg (Eds.) Sorghum Root and Stalk Rots, a Critical Review. Proceedings of the Consultative Group Discussion on Research Needs and Strategies for Control of Root and Stalk Rot Diseases. 27 Nov - 2 Dec 1983, Bellagio, Italy. Patancheru, A.P. 502324, India: ICRISAT Press.Google Scholar
  37. Rosenow, D.T., & Clark, L.E. (1995). Drought and lodging resistance for a quality sorghum crop (pp. 82–97). Proceedings of the 50th Annual Corn and Sorghum Industry Research Conference. Dec 6 – 7, 1995. American Seed Trade Association, Chicago, IL.Google Scholar
  38. Rosenow, D. T., & Dahlberg, J. A. (2000). Collection, conversion, and utilization of sorghum. In C. W. Smith & R. A. Frederiksen (Eds.), Sorghum: Origin, History, Technology and Production (pp. 309–328). NY, USA: John Wiley and Sons.Google Scholar
  39. Roy, B. A., & Kirchner, J. W. (2000). Evolutionary dynamics of pathogen resistance and tolerance. Evolution, 54, 51–63.PubMedCrossRefGoogle Scholar
  40. SAS Institute. (2008). The SAS users guide, Version 9.2. Cary, NC: SAS Inst.Google Scholar
  41. Schafer, J. F. (1971). Tolerance to plant disease. Ann. Rev. Phytopathology., 9, 235–252.CrossRefGoogle Scholar
  42. Scott, J. C., Gordon, T., Kirkpatrick, S. C., Koike, S. T., Matheron, M. E., Ochoa, O. E., Truco, M. J., & Michelmore, R. W. (2012). Crop rotation and genetic resistance reduce risk of damage from Fusarium wilt in lettuce. California Agriculture, 66, 20–24.CrossRefGoogle Scholar
  43. Suge, H., Nishizawa, T., Takahashi, H., & Takeda, K. (1997). Phenotypic plasticity of internode elongation stimulated by deep-seeding and ethylene in wheat seedlings. Plant Cell and Environment, 20, 961–964.CrossRefGoogle Scholar
  44. Suge, H., Nishizawa, T., Takahashi, H., & Takeda, K. (1998). Inheritance of the first internode elongation due to deep-seeding and ethylene treatment in wheat. Breeding Science, 48, 151–157.Google Scholar
  45. Tarr, S. A. J. (1962). Root and stalk diseases: Red stalk rot, Colletotrichum rot, anthracnose, and red leaf spot. In Diseases of Sorghum, Sudan Grass and Brown Corn (pp. 58–73). Kew, Surrey, UK: Commonwealth Mycological Institute Press.Google Scholar
  46. Tesso, T., Claflin, L. E., & Tuinstra, M. R. (2004). Estimation of combining ability for resistance to Fusarium stalk rot in grain sorghum. Crop Science, 44, 1195–1199.CrossRefGoogle Scholar
  47. Tesso, T. T., Claflin, L. E., & Tuinstra, M. R. (2005). Analysis of stalk rot resistance and genetic diversity among drought tolerant sorghum genotypes. Crop Science, 45, 645–652.CrossRefGoogle Scholar
  48. Tesso, T., & Ejeta, G. (2011). Stalk strength and reaction to infection by Macrophomina phaseolina of brown midrib maize (Zea mays) and sorghum (Sorghum bicolor). Field Crops Research, 120, 271–275.CrossRefGoogle Scholar
  49. Tesso, T., Ochanda, N., Claflin, L., & Tuinstra, M. (2009). An improved method for screening Fusarium stalk rot resistance in grain sorghum (Sorghum bicolor [L.] Moench.). African Journal of Plant Science, 3, 254–262.Google Scholar
  50. Tesso, T. T., Ochanda, N., Little, C. R., Claflin, L., & Tuinstra, M. R. (2010). Analysis of host plant resistance to multiple Fusarium species associated with stalk rot disease in sorghum [Sorghum bicolor (L.) Moench]. Field Crops Research, 118, 177–182.CrossRefGoogle Scholar
  51. Tesso, T., Perumal, R., Little, C. R., Adeyanju, A., Radwan, G. L., Prom, L. K., & Magill, C. W. (2012). Sorghum Pathology and Biotechnology - A Fungal Disease Perspective: Part II. Anthracnose, Stalk Rot, and Downy Mildew. European Journal of Plant Science and Biotechnology, 6, 31–44.Google Scholar
  52. Tiffin, P. (2000). Are tolerance, avoidance, and antibiosis evolutionarily and ecologically equivalent responses of plants to herbivores? The American Naturalist, 155, 128–138.PubMedCrossRefGoogle Scholar
  53. Upadhyaya, H. D., Pundir, R. P. S., Dwivedi, S. L., Gowda, C. L. L., Reddy, V. G., & Singh, S. (2009). Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Science, 49, 1769–1780.CrossRefGoogle Scholar
  54. Voesenek, L. A. C. J., Van der Putten, W. H., Maun, M. A., & Blom, C. W. P. M. (1998). The role of ethylene and darkness in accelerated shoot elongation of Ammophila breviligulata upon sand burial. Oecologia, 115, 359–365.CrossRefGoogle Scholar
  55. Williams, A., Hector, P. Q., & Victor, M. G. (2009). Grain sorghum varieties reaction [Sorghum bicolor (L.) Moench] to Macrophomina phaseolina (Tassi) Goid. Revista Mexicana de Fitopatología, 27, 148–155.Google Scholar
  56. Zummo, N. (1980). Fusarium disease complex of sorghum in West Africa. In Proceedings of the International Workshop on Sorghum Diseases (pp. 11–15). Hyderabad, India: ICRISAT Press.Google Scholar
  57. Zummo, N. (1984). Fusarium root and stalk disease complex (pp. 25-29) In: G. Rosenberg (Eds.) Sorghum Root and Stalk Rots, a Critical Review. Proceedings of the Consultative Group Discussion on Research Needs and Strategies for Control of Root and Stalk Rot Diseases. 27 Nov - 2 Dec 1983, Bellagio, Italy. Patancheru, A.P. 502324, India: ICRISAT Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Y. M. A. Y. Bandara
    • 1
  • R. Perumal
    • 2
  • C. R. Little
    • 1
  1. 1.Department of Plant PathologyKansas State UniversityManhattanUSA
  2. 2.Kansas State University, Agricultural Research Center-HaysHaysUSA

Personalised recommendations