, Volume 43, Issue 1, pp 37–49 | Cite as

Characterization of Colletotrichum spp. causing anthracnose of bell pepper (Capsicum annuum L.) in Trinidad

  • Hema Ramdial
  • Sephra N. RampersadEmail author


Anthracnose fruit rot of pepper (Capsicum spp.) is an economically important disease in many countries worldwide. This study was conducted to identify and characterize the pathogens responsible for anthracnose disease in bell peppers (C. annuum L.) in Trinidad. Seventy-two percent of all isolates were Colletotrichum truncatum and 28% were C. gloeosporioides. Growth rate and conidia dimensions were reliable morphological markers that allowed differentiation between C. gloeosporioides and C. truncatum isolates. Benomyl sensitivity testing also distinguished between isolates of C. gloeosporioides and C. truncatum. C. truncatum was resistant to benomyl at all concentrations tested while C. gloeosporioides sensu lato was sensitive to concentrations above 0.1 μg ml-1 . Pathogenicity tests demonstrated different levels of resistance to anthracnose in various Capsicum genotypes. C. gloeosporioides sensu lato isolates caused significantly greater damage than C. truncatum isolates regardless of pepper cultivar. PCR with taxon- and species-specific primers produced amplicons of expected band sizes for all Colletotrichum species and only for C. gloeosporioides, respectively. Molecular analysis of ITS and β-tubulin sequences positioned C. gloeosporioides sensu lato and C. truncatum isolates from bell pepper into separate species-specific clusters.


Capsicum spp Fungicide resistance Molecular identification Pathogenicity 



The authors wish to thank Ms. Lisa Teelucksingh for technical assistance and Mr. Neemal Do of ASASCO Trinidad. This work was funded in part by the University of the West Indies, St. Augustine Campus, Research and Publications Grant No. CRP.3.NOV11.8.


  1. Alexander, S. A., & Pernezny, K. (2003). Anthracnose. In K. Pernezny, P. D. Roberts, J. F. Murphy, & N. P. Goldberg (Eds.), Compendium of pepper diseases (pp. 9–10). St. Paul, MN, USA: American Phytopathological Society Press.Google Scholar
  2. Bailey, J. A., O’Connell, R. J., Pring, R. J., & Nash, C. (1992). Infection strategies of Colletotrichum species. In J. A. Bailey & M. J. Jeger (Eds.), Colletotrichum: biology, pathology and control (pp. 88–120). Wallingford, UK: CAB International.Google Scholar
  3. Biles, C., Wall, M. M., Waugh, M., & Palmer, H. (1993). Relationship of phytophthora fruit rot to fruit maturation and cuticle thickness of New-Mexican type peppers. Phytopathology, 83, 607–611.CrossRefGoogle Scholar
  4. Black, L. L., & Wang, T. C. (2007). Chili anthracnose research at AVRDC 1993-2002. In: D. Oh, & K. Ki-Taek (Eds.) Abstracts of the First International Symposium on Chili Anthracnose. National 383 Horticultural Research Institute, Rural Development of Administration, Republic of Korea.Google Scholar
  5. Cannon, P. F., Buddie, A. G., & Bridge, P. D. (2008). The typification of Colletotrichum gloeosporioides. Mycotaxon, 104, 189–204.Google Scholar
  6. Cannon, P. F., Damm, U., Johnston, P. R., & Weir, B. S. (2012). Colletotrichum – current status and future directions. Studies in Mycology, 73, 181–213.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Damm, U., Woudenberg, J. H. C., Cannon, P. F., & Crous, P. W. (2009). Colletotrichum species with curved conidia from herbaceous hosts. Fungal Diversity, 39, 45–87.Google Scholar
  8. FAO/WHO. (1985). Evaluations 1983 of pesticide residues in food. FAO Plant Production and Protection Paper, 61, 8–32.Google Scholar
  9. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  10. Freeman, S., Katan, T., & Shabi, E. (1998). Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant Disease, 82, 596–605.CrossRefGoogle Scholar
  11. Glass, N. L., & Donaldson, G. C. (1996). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.Google Scholar
  12. Harp, T. L., Kuhn, P., Roberts, P. D., & Pernezny, K. L. (2013). Management and cross-infectivity potential of Colletotrichum acutatum causing anthracnose on bell pepper in Florida. Phytoparasitica, 42, 31–39.CrossRefGoogle Scholar
  13. Harp, T. L., Pernezny, K., Lewis-Ivey, M. L., Miller, S. A., & Kuhn, P. J. (2008). The etiology of recent pepper anthracnose outbreaks in Florida. Crop Protection, 27, 1380–1384.CrossRefGoogle Scholar
  14. Hong, J. K., & Hwang, B. K. (1998). Influence of inoculum density, wetness duration, plant age, inoculation method, and cultivar resistance on infection of pepper plants by Colletotrichum coccodes. Plant Disease, 82, 1079–1083.CrossRefGoogle Scholar
  15. Hyde, K. D., Cai, L., Cannon, P. F., Crouch, J. A., Crous, P. W., Damm, U., et al. (2009). Colletotrichum – names in current use. Fungal Diversity, 39, 147–183.Google Scholar
  16. Katan, T. (2000). Vegetative compatibility in Colletotrichum. In D. Prusky, S. Freeman, & M. Dickman (Eds.), Colletotrichum: Host specificity, pathology and host pathogen interaction. St. Paul, MN, USA: APS Press.Google Scholar
  17. Lewis-Ivey, M. L., Nava-Diaz, C., & Miller, S. A. (2004). Identification and management of Colletotrichum acutatum on immature bell peppers. Plant Disease, 88, 1198–1204.CrossRefGoogle Scholar
  18. Lubbe, C. M., Denman, S., Cannon, P. F., Groenewald, J. Z., Lamprecht, S. C., & Crous, P. W. (2004). Characterization of Colletotrichum species associated with diseases of Proteaceae. Mycologia, 96, 1268–1279.PubMedCrossRefGoogle Scholar
  19. Mills, P. R., Hodson, A., & Brown, A. E. (1992). Molecular differentiation of Colletotrichum gloeosporioides isolates infecting tropical crops (pp. 269–288). In J. A. Bailey & M. J. Jeger (Eds.), Colletotrichum: biology, pathology and control. Wallingford, UK: CAB International.Google Scholar
  20. Montri, P., Taylor, P. W. J., & Mongkolporn, O. (2009). Pathotypes of Colletotrichum capsici, the causal agent of chili anthracnose, in Thailand. Plant Disease, 93, 17–20.CrossRefGoogle Scholar
  21. Moriwaki, J., & Tsukiboshi, T. (2002). Grouping of Colletotrichum species in Japan based on rDNA sequences. Journal of General Plant Pathology, 68, 307–320.CrossRefGoogle Scholar
  22. Nirenberg, H. I., Feiler, U., & Hagedorn, G. (2002). Description of Colletotrichum lupine comb. Nov. in modern terms. Mycologia, 94, 307–320.CrossRefGoogle Scholar
  23. Oh, B. J., Kim, K. D., & Kim, Y. S. (1999). Effect of cuticular wax layers of green and red pepper fruits on infection by Colletotrichum gloeosporioides. Journal of Phytopathology, 147, 547–552.CrossRefGoogle Scholar
  24. Peres, N. A. R., Kuramae, E. E., Dias, M. S. C., & de Souza, N. L. (2002). Identification and characterization of Colletotrichum spp. affecting fruit after harvest in Brazil. Journal of Phytopathology, 150, 128–134.CrossRefGoogle Scholar
  25. Peres, N. A. R., Souza, N. L., Peever, T. L., & Timmer, L. W. (2004). Benomyl sensitivity of isolates of Colletotrichum acutatum and C. gloeosporioides from citrus. Plant Disease, 88, 125–130.CrossRefGoogle Scholar
  26. Pring, R. J., Nash, C., Zakaria, M., & Bailey, J. A. (1995). Infection process and host range of Colletotrichum capsici. Physiological and Molecular Plant Pathology, 46, 137–152.CrossRefGoogle Scholar
  27. Roberts, P. D., Pernezny, K., & Kucharek, T. A. (2001). Anthracnose caused by Colletotrichum in pepper. Gainesville, FL, USA: Factsheet of University of Florida/Institute of Food and Agricultural Sciences.Google Scholar
  28. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.PubMedGoogle Scholar
  29. Sharma, P. N., Kaur, M., Sharma, O. P., & Pathania, A. (2005). Morphological, pathological and molecular variability in Colletotrichum capsici, the cause of fruit rot of chillies in the sub-tropical region of north-western India. Journal of Phytopathology, 153, 232–237.CrossRefGoogle Scholar
  30. Smith, B. J., & Black, L. L. (1990). Morphological, cultural, and pathogenic variation among Colletotrichum species isolated from strawberry. Plant Disease, 74, 69–76.CrossRefGoogle Scholar
  31. Sutton, B. C. (1992). The genus Glomerella and its anamorph Colletotrichum (pp. 1–26). In J. A. Bailey & M. J. Jeger (Eds.), Colletotrichum: biology, pathology and control. Wallingford, UK: CAB International.Google Scholar
  32. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.PubMedCrossRefGoogle Scholar
  33. Taylor, P. W. J., & Ford, R. (2007). Diagnostics, genetics diversity and pathogenic variation of ascochyta blight of cool season food and feed legumes. European Journal of Plant Pathology, 119, 127–133.CrossRefGoogle Scholar
  34. Than, P. P., Jeewon, R., Hyde, K. D., Pongsupasamit, S., Mongkolporn, O., & Taylor, P. W. J. (2008a). Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chilli (Capsicum spp.) in Thailand. Plant Pathology, 57, 562–572.CrossRefGoogle Scholar
  35. Than, P. P., Prihastuti, H., Phoulivong, S., Taylor, P. W. J., & Hyde, K. D. (2008b). Chilli anthracnose disease caused by Colletotrichum species. Journal of Zhejiang University of Science B, 9, 764–778.CrossRefGoogle Scholar
  36. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics (pp. 315–322). In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications. New York, NY: Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Life Sciences, Biotechnology LaboratoryThe University of the West IndiesSt. AugustineWest Indies

Personalised recommendations