Advertisement

Phytoparasitica

, Volume 43, Issue 1, pp 61–75 | Cite as

Effects of Bacillus subtilis, Pseudomonas fluorescens and Aspergillus awamori on the wilt-leaf spot disease complex of tomato

Article

Abstract

The effects of Bacillus subtilis, Aspergillus awamori and Pseudomonas fluorescens on the wilt–leaf spot disease complex of tomato caused by Meloidogyne javanica, Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria were observed. Inoculation of B. subtilis, A. awamori and P. fluorescens caused a significant increase in plant growth and chlorophyll contents of pathogen-inoculated plants. Inoculation of P. fluorescens caused a greater increase in plant growth and chlorophyll contents of pathogen-inoculated plants than that caused by A. awamori. Application of P. fluorescens with B. subtilis caused a greater increase in plant growth and chlorophyll contents of pathogen-inoculated plants, but the maximum increase was observed when all the three biocontrol agents were inoculated together. P. fluorescens colonized tomato roots more than colonization by B. subtilis. Root colonization by P. fluorescens and B. subtilis was reduced when pathogens were inoculated with rhizobacteria. Inoculation of P. fluorescens caused a greater reduction in galling and nematode reproduction, followed by B. subtilis and A. awamori. Maximum reduction in galling, nematode reproduction, wilt and leaf spot disease indices was observed when all three biocontrol agents were used together.

Keywords

Biocontrol Meloidogyne Ralstonia Solanum lycopersicum Xanthomonas 

References

  1. Agrios, G. N. (2005). Plant pathology (5th ed.). London, UK: Elsevier Academic Press.Google Scholar
  2. Akhtar, M. S., & Siddiqui, Z. A. (2008). Biocontrol of a root-rot disease complex of chickpea by Bacillus subtilis, Rhizobium sp. and Pseudomonas striata. Crop Protection, 27, 410–417.CrossRefGoogle Scholar
  3. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1–15.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bais, H. P., Fall, R., & Vivanco, J. M. (2004). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology, 134, 307–319.Google Scholar
  5. Berger, S., Sinha, A. K., & Roitsch, T. (2007). Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. Journal of Experimental Botany, 58, 4019–4026.PubMedCrossRefGoogle Scholar
  6. Bhatti, D. S., & Jain, R. K. (1977). Estimation of loss in okra, tomato and brinjal yield due to Meloidogyne incognita. Indian Journal of Nematology, 7, 37–41.Google Scholar
  7. Boch, J., & Bonas, U. (2010). Xanthomonas AvrBs3 family-type III effectors: Discovery and function. Annual Review of Phytopathology, 48, 419–436.PubMedCrossRefGoogle Scholar
  8. Butcher, R. A., Schroeder, F. C., Fischbach, M. A., Straight, P. D., Kolter, R., Walsh, C. T., et al. (2007). The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proceedings of the National Academy of Sciences of the USA, 104, 1506–1509.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Buysens, S., Heungens, K., Poppe, J., & Höfte, M. (1996). Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Applied Environmental Microbiology, 62, 865–871.PubMedCentralPubMedGoogle Scholar
  10. Chen, X. H., Scholz, R., Borriss, M., Junge, H., Mogel, G., Kunz, S., et al. (2009). Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. Journal of Biotechnology, 140, 38–44.PubMedCrossRefGoogle Scholar
  11. Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R., et al. (2013). Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental Microbiology, 15, 848–864.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cronin, D., Moënne-Loccoz, Y., Fenton, A., Dunne, C., Dowling, D. N., et al. (1997). Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiology Ecology, 23, 95–106.CrossRefGoogle Scholar
  13. Domsch, K. H., Gams, W., & Anderson, T. H. (1980). Compendium of soil fungi. London, UK: Academic Press.Google Scholar
  14. Eapen, S. J., Beena, B., & Ramana, K. V. (2005). Tropical soil microflora of spice-based cropping systems as potential antagonists of root-knot nematodes. Journal of Invertebrate Pathology, 88, 218–225.PubMedCrossRefGoogle Scholar
  15. Hailei, W., & Liqun, Z. (2006). Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24. Antonie van Leeuwenhoek Journal of Microbiology, 89, 267–280.CrossRefGoogle Scholar
  16. Howell, C. R., & Stipanovic, R. D. (1979). Control of Rhizoctonia solani in cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology, 69, 480–482.CrossRefGoogle Scholar
  17. Howell, C. R., & Stipanovic, R. D. (1980). Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology, 70, 712–715.CrossRefGoogle Scholar
  18. Ji, X. L., Lu, G. B., Gai, Y. P., Zheng, C. C., & Mu, Z. M. (2008). Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiology Ecology, 65, 565–573.PubMedCrossRefGoogle Scholar
  19. Khan, M. R., Khan, S. M., & Mohiddin, F. A. (2007). Effect of certain fungal and bacterial phosphate solubilizing microorganisms on the fusarial wilt of tomato. Developmental Plant and Soil Science, 102, 357–361.CrossRefGoogle Scholar
  20. Lemessa, F., & Zeller, W. (2007). Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biological Control, 42, 336–344.CrossRefGoogle Scholar
  21. Loper, J. E., & Buyer, J. S. (1991). Siderophores in microbial interactions on plant surfaces. Molecular and Plant Microbe Interactions, 4, 5–13.CrossRefGoogle Scholar
  22. Murakami, H. (1979) Classification system of the black Aspergilli. Taxonòmic studies on Japanese industrial strains of the Aspergillus (part 32). Journal of the Brewing Society of Japan, 74, 849-853. Google Scholar
  23. Nagorska, K., Bikowski, M., & Obuchowskji, M. (2007). Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochimica Polonica, 54, 495–508.PubMedGoogle Scholar
  24. Nair, M. G., & Burke, B. A. (1988). A new fatty acid, methyl ester and other biologically active compounds from Aspergillus niger. Phytochemistry, 27, 3169–3173.CrossRefGoogle Scholar
  25. Nakazawa, R. (1907). Onkoji fungus, Aspergillus awamori. Report of Agriculture, Government Research Institute of Formosa, vol. 1.Google Scholar
  26. Nowak-Thompson, B., Gould, S. J., Kraus, J., & Loper, J. E. (1994). Production of 2,4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Canadian Journal of Microbiology, 40, 1064–1066.CrossRefGoogle Scholar
  27. Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115–125.PubMedCrossRefGoogle Scholar
  28. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., & Joris, B., et al. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 9, 1084–1090.Google Scholar
  29. Palakshappa, M. G., Kulkarni, S., & Hedge, R. K. (1989). Effect of organic amendment on the survival activity of Sclerotium rolfsii Sacc., a causal agent of the foot rot of berelvine. Mysore Journal of Agricultural Science, 23, 332–336.Google Scholar
  30. Paulsen, I. T., Press, C. M., Ravel, J., Kobayashi, D. Y., Myers, G. S., Mavrodi, D. V., et al. (2005). Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nature Biotechnology, 23, 873–878.PubMedCrossRefGoogle Scholar
  31. Pierson, E. A., & Weller, D. M. (1994). Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology, 84, 940–947.CrossRefGoogle Scholar
  32. Piggot, P. J., & Hilbert, D. W. (2004). Sporulation of Bacillus subtilis. Current Opinion in Microbiology, 7, 579–586.PubMedCrossRefGoogle Scholar
  33. Qing, Y., Wei, G., Xiaogang, W., & Liqun, Z. (2009). Regulation of the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24 by the two-component PhoP/PhoQ system. Microbiology, 155, 124–133.CrossRefGoogle Scholar
  34. Raupach, G. S., & Kloepper, J. W. (1998). Mixture of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology, 88, 1158–1164.PubMedCrossRefGoogle Scholar
  35. Reddy, D. D. R. (1985). Analysis of crop losses in tomato due to Meloidogyne incognita. Indian Journal of Nematology, 15, 55–59.Google Scholar
  36. Riker, A. J., & Riker, R. S. (1936). Introduction to research on plant diseases. Louis, MO, USA: St. John S. Swift Co. Inc.Google Scholar
  37. Sharma, P. D. (2001). Microbiology. Meerut, India: Rastogi and Company.Google Scholar
  38. Siddiqui, Z. A., & Futai, K. (2009). Biocontrol of Meloidogyne incognita using antagonistic fungi, plant growth-promoting rhizobacteria and cattle manure on tomato. Pest Management Science, 65, 943–948.PubMedCrossRefGoogle Scholar
  39. Siddiqui, Z. A., Iqbal, A., & Mahmood, I. (2001). Effects of Pseudomonas fluorescens and fertilizers on the reproduction of Meloidogyne incognita and growth of tomato. Applied Soil Ecology, 16, 179–185.CrossRefGoogle Scholar
  40. Singh, N., & Siddiqui, Z. A. (2012). Inoculation of tomato with Ralstonia solanacearum, Xanthomonas campestris, and Meloidogyne javanica. International Journal of Vegetable Science, 18, 78–86.CrossRefGoogle Scholar
  41. Southey, J. F. (1986). Laboratory methods for work with plant and soil nematodes. London, UK: MAFF, Her Majesty's Stationery Office.Google Scholar
  42. Vassilev, N., Vassileva, N., & Nikolaeva, I. (2006). Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Applied Microbiology and Biotechnology, 71, 137–144.PubMedCrossRefGoogle Scholar
  43. Wei, G., Kloepper, J. W., & Tuzun, S. (1996). Induced systemic resistance to cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field conditions. Phytopathology, 86, 221–224.CrossRefGoogle Scholar
  44. Wei, H. L., Wang, Y., Zhang, L. Q., & Tang, W. H. (2004). Identification and characterization of biocontrol bacterial strain RT 2P24 and CPF-10. Acta Phytopathologica Sinica, 34, 80–85.Google Scholar
  45. Weidenmaier, C., & Peschel, A. (2008). Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. National Review of Microbiology, 6, 276–287.CrossRefGoogle Scholar
  46. Wilson, M., & Backman, P. A. (1999). Biological control of plant pathogens. In J. R. Ruberson (Ed.), Handbook of pest management (pp. 309–335). New York, NY: Marcel-Dekker, Inc.Google Scholar
  47. Wu, S. G., Duan, H. M., Tia, T., Ya, N., Zhou, H. Y., et al. (2010). Effect of the hfq gene on 2,4-diacetylphloroglucinol production and the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24. FEMS Microbiology Letters, 309, 16–24.PubMedGoogle Scholar
  48. Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H., & Nishiuchi, Y. (1996). Ralstonia, named after E. Ralston, the American bacteriologist who first described Pseudomonas pickettii. Validation list no. 57. International Journal of Systematic Bacteriology, 46, 625--626.Google Scholar
  49. Xu, G. W., & Gross, D. C. (1986). Selection of fluorescent pseudomonads antagonistic to Erwinia carotovora and suppressive of potato seed piece decay. Phytopathology, 76, 414–422.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of BotanyAligarh Muslim UniversityAligarhIndia

Personalised recommendations