Phytoparasitica

, Volume 40, Issue 3, pp 279–286 | Cite as

Detection and molecular characterization of phytoplasma associated with chickpea phyllody disease in south India

  • M. S. Pallavi
  • H. K. Ramappa
  • K. S. Shankarappa
  • K. T. Rangaswamy
  • W. A. R. T. Wickramaarachchi
  • M. N. Maruthi
Article

Abstract

Chickpea (Cicer arietinum L.) plants showing typical symptoms of infection by a phytoplasma that causes phyllody disease have been commonly observed in recent years in parts of south India. The symptoms included pale green leaves, bushy appearance due to excessive stunting of shoots, reduced internodal length and excessive axillary proliferation. The causal agent of the phyllody disease was identified based on symptoms, amplification of 16S rDNA of the phytoplasma by polymerase chain reaction (PCR) from infected samples, as well as by sequencing and phylogenetic analysis. First round PCR and nested-PCR protocols were standardized for improved efficiency and reliability of the diagnostic protocols. Using the primers P1/P7 and R16F2n/R16R2, 1,800 bp and 1,200 bp size products were amplified in first round PCR and nested-PCR protocols, respectively. The PCR product was cloned and sequenced and compared with the reference phytoplasma sequences from the database (NCBI). The Indian chickpea phyllody phytoplasma 16S rDNA sequences shared the highest nucleotide identity (>98%) with the 16S rII group phytoplasma candidates, also infecting chickpea from Australia and Pakistan. This is the first report of a phytoplasma of the 16SrII-group infecting chickpea from India. The genetic similarities and the potential threat of this new disease to chickpea cultivation in India are discussed.

Keywords

Cicer arietinum Nested-PCR Polymerase chain reaction 

References

  1. Akhtar, K. P., Shah, T. M., Atta, B. M., Dickison, M. J., Hodgetts, R. A., Khan, M. A., et al. (2009). Symptomatology, etiology and transmission of chickpea phyllody disease in Pakistan. Journal of Plant Pathology, 91, 649–653.Google Scholar
  2. Akhtar, K. P., Shah, T. M., Atta, B. M., Dickison, M., Jamil, F. F., Haq, M. A., et al. (2008). Natural occurrence of phytoplasma associated with chickpea phyllody disease in Pakistan—a new record. Plant Pathology, 57, 771–773. doi:10.1111/j.1365-3059.2007.01800.x.Google Scholar
  3. Al-Saady, N. A., Al-Subhi, A. M., Al-Nabhani, A., & Khan, A. J. (2006). First report of a group 16SrII phytoplasma infecting chickpea in Oman. Plant Disease, 90, 734.CrossRefGoogle Scholar
  4. Anon. (2008). Statistical data on agricultural crops in Karnataka State. India: Department of Agriculture, Government of Karnataka.Google Scholar
  5. Anon. (2009). Annual report of chickpea, AICRP on chickpea. Karnataka, Bangalore, India: ZARS, GKVK.Google Scholar
  6. Deng, S., & Hiruki, C. (1991). Genetic relatedness between two non-culturable mycoplasmalike organisms revealed by nucleic acid hybridization and polymerase chain reaction. Phytopathology, 81, 1475–1479.CrossRefGoogle Scholar
  7. Ghanekar, A. M., Manohar, S. K., Reddy, S. V., & Nene, Y. L. (1988). Association of a mycoplasma-like organism with chickpea phyllody. Indian Phytopathology, 41, 462–464.Google Scholar
  8. Gundersen, D. E., & Lee, I. M. (1996). Ultrasensitive detection of phytoplasmas by nested PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 35, 144–151.Google Scholar
  9. Harrison, N. A., Womack, M., & Carpio, M. L. (2002). Detection and characterization of a lethal yellowing (16SrIV) group phytoplasma in Canary Island date palms affected by lethal decline in Texas. Plant Disease, 86, 676–681.CrossRefGoogle Scholar
  10. Khan, A. J., Srivastava, P., & Singh, S. K. (2004). Efficacy of nested-PCR for the detection of phytoplasma causing spike disease of sandal. Current Science, 86, 1530–1533.Google Scholar
  11. Lee, I. M., & Davis, R. E. (1992). Mycoplasmas which infect plants and insects. In J. Maniloff, R. N. McElhaney, L. R. Finch, & J. B. Baseman (Eds.), Mycoplasmas: Molecular biology and pathogenesis (pp. 379–390). Washington, DC: American Society for Microbiology.Google Scholar
  12. Lee, I. M., Gundersen-Rindal, D. E., Davis, R. E., Botter, K. D., & Seemuller, E. (2004). Candidatus phytoplasma asteries, a novel phytoplasma taxon associated with aster yellows and related diseases. International Journal of Systematic and Evolutionary Microbiology, 54, 1037–1048.PubMedCrossRefGoogle Scholar
  13. Lee, I. M., Gundersen, D. E., Hammond, R. W., & Davis, R. E. (1994). Use of mycoplasma like organism (MLO) group-specific oligonucleotide primers from nested-PCR assays to detect mixed-MLO infections in a single host plant. Phytopathology, 84, 559–566.CrossRefGoogle Scholar
  14. Lee, I. M., Hammond, R. W., Davis, R. E., & Gundersen, D. E. (1993). Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasma-like organisms. Phytopathology, 83, 834–842.CrossRefGoogle Scholar
  15. Marcone, C., Lee, I. M., Davis, R. E., Ragozzino, A., & Seemuller, E. (2000). Classification of aster yellows-group phytoplasmas based on combined analysis of rRNA and tuf gene sequences. International Journal of Systematic and Environmental Microbiology, 50, 1703–1713.Google Scholar
  16. Maruthi, M. N., Colvin, J., Seal, S., Gibbson, G., & Cooper, J. (2002). Co-adaptation between cassava mosaic geminiviruses and their local vector populations. Virus Research, 86, 71–85.PubMedCrossRefGoogle Scholar
  17. Montano, H. G., Davis, R. E., Daily, E. L., Hogenhout, S., Pimenlet, J. P., & Brioso, P. S. T. (2001). ‘Candidatus phytoplasma brasiliense’, a new phytoplasma taxon associated with hibiscus witches’ broom disease. International Journal of Systematic and Environmental Microbiology, 51, 1109–1118.CrossRefGoogle Scholar
  18. Namba, S. H., Oyaizu, H., Kato, S., Iwanami, S., & Tsuchizaki, T. (1993). Phylogenetic diversity of phytopathogenic mycoplasma-like organisms. International Journal of Systematic Bacteriology, 43, 461–467.PubMedCrossRefGoogle Scholar
  19. Omar, A. F., Emeran, A. A., & Abass, J. M. (2008). Detection of phytoplasma associated with periwinkle virescence in Egypt. Plant Pathology Journal, 7, 92–97.CrossRefGoogle Scholar
  20. Omar, A. F., Kumar, Y., Hallan, V., & Aijaz, Z. A. (2010). Molecular characterization of the phytoplasmas associated with toon trees and periwinkle in India. Journal of General Plant Pathology, 6, 351–354.Google Scholar
  21. Ramappa, H. K., Chandrasekar, K., Patil, C. S. P., & Pallavi, M. S. (2008). Occurrence of Ascochyta blight and phyllody diseases of chickpea in southern Karnataka. In: National seminar on advances in plant pathology for sustainable agriculture (Coimbatore, India, pp. 35–36).Google Scholar
  22. Rojas-Martinez, R. I., Zavaleta-Mejia, E., Lee, I. M., Martini, M., & Aspiros, H. S. (2003). Detection and characterization of the phytoplasma associated with marigold phyllody in Mexico. Journal of Plant Pathology, 85, 81–86.Google Scholar
  23. Salehi, M., Izadpanah, K., & Siampour, M. (2008). First record of ‘Candidatus phytoplasma trifolii’-related strain associated with safflower phyllody disease. Iran Plant Disease, 92, 649.CrossRefGoogle Scholar
  24. Samuitiene, M., & Navalinskiene, M. (2006). Molecular detection and characterization of phytoplasma infecting Celosia argentea plants in Lithuania. Agronomy Research, 4, 345–348.Google Scholar
  25. Saqib, M., Bayliss, K. L., & Jones, M. G. K. (2006). Identification of sweet potato little leaf phytoplasma associated with Vigna unguiculata var. sesquipedalis and Lycopersicon esculentum. Australasian Plant Pathology, 35, 293–296.CrossRefGoogle Scholar
  26. Schneider, B., Seemuller, E., Smart, C. D., & Kirkpatrick, B. C. (1995). Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. In S. Razin & G. J. Tully (Eds.), Molecular and diagnostic procedures in mycoplasmology (pp. 369–380). New York, NY: Academic.CrossRefGoogle Scholar
  27. Seemuller, E., Schneider, B., Maurer, R., Ahrens, U., Daire, X., Kison, H., et al. (1994). Phylogenetic classification of phytopathogenic mollicutes by sequence analysis of 16S ribosomal DNA. International Journal of Systematic Bacteriology, 44, 440–446.PubMedCrossRefGoogle Scholar
  28. Singh, S. K., Aminuddin, P., Srivastava, B. R., Singh, J., & Khan, A. (2007). Production of phytoplasma free plants from yellow leaf diseased Catharanthus roseus L. (G.) Don. Journal of Plant Disease Protection, 114, 2–5.Google Scholar
  29. Smart, C. D., Schneider, B., Blomquist, C. L., Guerra, L. J., Harrison, N. A., Ahrens, U., et al. (1996). Phytoplasma-specific PCR primers based on sequences of 16S-23SrRNA spacer region. Applied and Environmental Microbiology, 62, 2988–2993.PubMedGoogle Scholar
  30. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.PubMedCrossRefGoogle Scholar
  31. Wei, W., Robert, E. D., Lee, I.-M., & Zhao, Y. (2007). Computer-simulated RFLP analysis of 16S rRNA genes: Identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology, 57, 1855–1867.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2012

Authors and Affiliations

  • M. S. Pallavi
    • 1
  • H. K. Ramappa
    • 2
  • K. S. Shankarappa
    • 3
  • K. T. Rangaswamy
    • 1
  • W. A. R. T. Wickramaarachchi
    • 1
  • M. N. Maruthi
    • 4
  1. 1.Department of Plant PathologyUniversity of Agricultural Sciences, GKVKBengaluruIndia
  2. 2.AICRP on Pigeonpea, Zonal Agricultural Research StationUniversity of Agricultural SciencesBengaluruIndia
  3. 3.Department of Horticultural Plant Pathology, K.R.C. College of Horticulture, Arabhavi-591 310University of Horticultural SciencesBagalkotIndia
  4. 4.Natural Resources InstituteUniversity of GreenwichKentUK

Personalised recommendations