Skip to main content
Log in

A molecular mechanism of resistance to streptomycin in Xanthomonas oryzae pv. oryzicola

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Xanthomonas oryzae pv. oryzicola, the causal agent of rice leaf streak disease, was found to be sensitive to streptomycin (an aminocyclitol glycoside antibiotic), by inhibition of protein synthesis resulting from interference with translational proofreading. This study aimed to determine the molecular resistance mechanism of X. oryzae pv. oryzicola to streptomycin. Seven streptomycin-resistant mutants were obtained by UV induction or streptomycin selection. These mutants can grow at 100 μg ml−1 of streptomycin while the wild-type strain (RS105) cannot grow at 5 μg ml−1. Sequencing indicated that the rpsL gene encoding ribosomal protein S12 has 375 bp encoding 125 amino acid residues. In all resistant strains, a mutation in which AAG was substituted for AGG (Lys→Arg) occurred either at codon 43 or 88. Two plasmids, pUFRRS and pUFRRX, were constructed by ligating the rpsL gene into the cosmid pUFR034. The plasmids pUFRRS and pUFRRX containing the Lys→Arg mutation of the rpsL gene conferred streptomycin resistance to the sensitive wild-type strain by electroporation. Both transformants, RS1 and RS2, could grow in the medium containing 50 μg ml−1 of streptomycin. A mutation at codon 43 or 88 in rpsL can result in resistance of Xanthomonas oryzae pv. oryzicola to streptomycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., & Smith, J. A. (1987). Current protocols in molecular biology. New York, NY: Wiley.

    Google Scholar 

  • Awoderv, V. A., Bangura, N., & John, V. T. (1991). Incidence, distribution and severity of bacterial diseases on rice in West Africa. International Journal of Pest Management, 37, 113–117.

    Article  Google Scholar 

  • Chiou, C. S., & Jones, A. L. (1991). The analysis of plasmid-mediated streptomycin resistance in Erwinia amylovora. Phytopathology, 81, 710–714.

    Article  Google Scholar 

  • Chiou, C. S., & Jones, A. L. (1995). Molecular analysis of high-level streptomycin resistance in Erwinia amylovora. Phytopathology, 85, 324–328.

    Article  CAS  Google Scholar 

  • DeFeyter, R., Kado, C. I., & Gabriel, D. W. (1990). Small, stable shuttle vectors for use in Xanthomonas. Gene, 88, 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Dobner, P., Bretzel, G., Rusch-Gerdes, S., Feldmann, K., Rifai, M., Loscher, T., et al. (1997). Geographic variation of the predictive values of genomic mutations associated with streptomycin resistance in Mycobacterium tuberculosis. Molecular and Cellular Probes, 11, 123–126.

    Article  PubMed  CAS  Google Scholar 

  • Finken, M., Kirschner, P., Meier, A., Wrede, A., & Bötger, E. C. (1993). Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Molecular Microbiology, 9, 1239–1246.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, S. T., Cate, J. H. D., & Dahlberg, A. E. (2001). Streptomycin-resistant and streptomycin-dependent mutants of the extreme thermophile Thermus thermophilus. Journal of Molecular Biology, 309, 333–338.

    Article  PubMed  CAS  Google Scholar 

  • Jones, A. L., & Norelli, J. L. (1991). Detection of streptomycin resistant Pseudomonas syringae pv. papulans in Michigan apple orchards. Plant Disease, 75, 529–531.

    Article  CAS  Google Scholar 

  • Kumar, S., Nei, M., Dudley, J., & Tamura, K. (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics, 9, 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.

    Article  PubMed  CAS  Google Scholar 

  • Li, M. (2007). Determination of Pseudomonas syringae pv. tabaci resistance to agricultural streptomycin. Chinese Agricultural Science Bulletin, 23, 328–332.

    Google Scholar 

  • Li, X. Z., & Nikaido, H. (2004). Efflux-mediated drug resistance in bacteria. Drugs, 64, 159–204.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Zhou, M., Li, H., Chen, C., Wang, J., & Zhang, Y. (2006). A study on the molecular mechanism of resistance to amicarthiazol in Xanthomonas campestris pv. citri. Pest Management Science, 62, 440–445.

    Article  PubMed  CAS  Google Scholar 

  • Madsen, L., Aarestrup, F. M., & Olsen, J. E. (2000). Characterisation of streptomycin resistance determinants in Danish isolates of Salmonella typhimurium. Veterinary Microbiology, 75, 73–82.

    Article  PubMed  CAS  Google Scholar 

  • Mathre, D. E. (1968). Uptake and binding of oxanthiin systemic fungicides by resistant and sensitive fungi. Phytopathology, 58, 1464–1469.

    CAS  Google Scholar 

  • McManus, P. S., & Jones, A. L. (1994). Epidemiology and genetic analysis of streptomycin resistant Erwinia amylovora from Michigan and evaluation of oxytetracycline for control. Phytopathology, 84, 627–633.

    Article  Google Scholar 

  • Moffett, M. L., & Croft, B. J. (1983). Xanthomonas. In P. C. Fahy & G. J. Persley (Eds.), Plant bacterial diseases (p. 393). New York, NY: Academic.

    Google Scholar 

  • Poole, K. (2004). Efflux-mediated multiresistance in Gram-negative bacteria. Clinical Microbiology and Infection, 10, 12–26.

    Article  PubMed  CAS  Google Scholar 

  • Singh, D. V., Banerjee, A. K., Kishun, R., & Abidi, A. B. (1980). Effect of bacterial leaf streak on the quantitative and qualitative characters of rice. Indian Journal of Mycology and Plant Pathology, 10, 67–68.

    Google Scholar 

  • Sundin, G. W. (2000). Examination of base pair variants of the strA-strB streptomycin resistance genes from bacterial pathogens of humans, animals and plants. Journal of Antimicrobial Chemotherapy, 46, 848–849.

    Article  PubMed  CAS  Google Scholar 

  • Sundin, G. W. (2002). Distinct recent lineages of the strA-strB streptomycin-resistance genes in clinical and environmental bacteria. Current Microbiology, 45, 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Sundin, G. W., & Bender, C. L. (1993). Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Applied and Environmental Microbiology, 59, 1018–1024.

    PubMed  CAS  Google Scholar 

  • Tang, D., Wu, W., Li, W., Lu, H., & Worland, A. J. (2000). Mapping of QTLs conferring resistance to bacterial leaf streak in rice. Theoretical and Applied Genetics, 101, 286–291.

    Article  CAS  Google Scholar 

  • Wang, W.-Q., Liu, G.-R., Zhang, X.-F., & Ma, Z.-Q. (2000). Studies on resistance risk to three fungicides in Plasmopara viticola and Phytophthora infestans. Acta Phytopathologica Sinica, 30, 48–52.

    Google Scholar 

  • Weldhagen, G. F. (2004). Integrons and β-lactamases – a novel perspective on resistance. International Journal of Antimicrobial Agents, 23, 556–562.

    Article  PubMed  CAS  Google Scholar 

  • Wu, X.-Q., Lu, Y., Zhang, J.-X., Liang, J.-Q., Zhang, G.-Y., Li, H.-M., et al. (2006). Detection of streptomycin resistance in Mycobacterium tuberculosis clinical isolates using four molecular methods in China. Acta Genetica Sinica, 33, 655–633.

    Article  PubMed  CAS  Google Scholar 

  • Xie, G., & Wang, H. (1991). Comparison of several bactericides against bacterial leaf streak of rice. Journal of Zhejiang Agricultural Science, 5, 233–235.

    Google Scholar 

  • Xie, G., Sun, S., Wang, G., Zhu, X., Chen, J., Ye, Y., et al. (1990). Studies on rice seed inspection of Xanthomonas campestris pv. oryzicola. Immunoradiometric assay. Chinese Journal of Rice Science, 4, 127–132.

    Google Scholar 

  • Xu, Y., Zhu, X. F., Zhou, M. G., Kuang, J., Zhang, Y., Shang, Y., et al. (2010). Status of streptomycin resistance development in Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola in China and their resistance characters. Journal of Phytopathology, 158, 601–608.

    CAS  Google Scholar 

  • Xue, Y. (2002). Control effect of several biotic pesticides against diseased rice. Jiangxi Plant Protection, 25, 68–71.

    Google Scholar 

  • Zhang, Y. J., Li, J., Zhao, W., & Zhou, M. G. (2010). A single amino acid substitution in the SdhB protein of succinate dehydrogenase determines resistance to amicarthiazol in Xanthomonas oryzae pv. oryzae. Pest Management Science, 66, 627–633.

    PubMed  CAS  Google Scholar 

  • Zhu, M., Ye, D., Zhang, Z., Liu, G., & Wu, X. (1992). Test on control effect of new zhimeisu and other pesticides medicament to principal diseases of rice. Plant Protection, 18, 26–27.

    Google Scholar 

Download references

Acknowledgments

This study was sponsored by the State “973” Programs from the Ministry of Science and Technology of China (2009CB118906 & 2006CB101907), the State “863” Programs from the Ministry of Science and Technology of China (2008AA10Z414), the National Natural Science Foundation of China (30800730), the program for public welfare industry from the Ministry of Agriculture of China (3–32:) and Anhui Provincial Natural Science Foundation (10040606Q26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingguo Zhou.

Additional information

Yong Zhang and Yu Chen share joint first authorship

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Chen, Y., Zhu, X. et al. A molecular mechanism of resistance to streptomycin in Xanthomonas oryzae pv. oryzicola . Phytoparasitica 39, 393–401 (2011). https://doi.org/10.1007/s12600-011-0172-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-011-0172-6

Keywords

Navigation