Advertisement

Business & Information Systems Engineering

, Volume 61, Issue 4, pp 535–544 | Cite as

AI-Based Digital Assistants

Opportunities, Threats, and Research Perspectives
  • Alexander Maedche
  • Christine LegnerEmail author
  • Alexander Benlian
  • Benedikt Berger
  • Henner Gimpel
  • Thomas Hess
  • Oliver Hinz
  • Stefan Morana
  • Matthias Söllner
Discussion
  • 509 Downloads

Introduction

Artificial intelligence (AI) is becoming omnipresent; it permeates our work and private lives in many areas. A key area of application is AI-based digital assistants, which are now becoming available in large numbers and a wide variety of usage scenarios. Research into AI-based digital assistants has a long history, dating back to Joseph Weizenbaum’s well-known ELIZA in 1966. In parallel, global technology companies such as Microsoft, IBM, Google, and Amazon have been working intensively for decades on advancing AI-based digital assistants and have recently made them suitable for the mass market. Empowered by recent advances in AI, these assistants are becoming part of our daily lives. We are observing the ever-growing usage of various digital assistants, for instance, voice-based assistants such as Amazon Alexa, or text-based assistants (chatbots), such as those embedded in Facebook Messenger. It is foreseen that AI-based digital assistants will become a key element in...

References

  1. Adam M, Toutaoui J, Pfeuffer N, Hinz O (2019) Investment decisions with robo-advisors: the role of anthropomorphism and personalized anchors in recommendations. In: Proceedings of the 27th European Conference on Information Systems (ECIS 2019). https://aisel.aisnet.org/ecis2019_rp/33/
  2. AI HLEG – European Commission’s High-Level Expert Group on Artificial Intelligence (2018) Draft guideline for trustworthy AI. BrusselGoogle Scholar
  3. Benlian A, Klumpe J, Hinz O (2019) Mitigating the intrusive effects of smart home assistants by using anthropomorphic design features: a multi-method investigation. Inf Syst J.  https://doi.org/10.1111/isj.12243
  4. Chatman JA, Flynn FJ (2005) Full-cycle micro-organizational behavior research. Organ Sci 16(4):434–447.  https://doi.org/10.1287/orsc.1050.0136 CrossRefGoogle Scholar
  5. Dastin J (2018) Amazon scraps secret AI recruiting tool that showed bias against women. https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G. Accessed 14 March 2019
  6. Davenport TH, Kirby J (2016) Just how smart are smart machines? Sloan Manag Rev 57(3):20–25Google Scholar
  7. Dellermann D, Ebel P, Söllner M, Leimeister JM (2019) Hybrid intelligence. Bus Inf Syst Eng.  https://doi.org/10.1007/s12599-019-00595-2 Google Scholar
  8. Dietvorst BJ, Simmons JP, Massey C (2015) Algorithm aversion: people erroneously avoid algorithms after seeing them err. J Exp Psychol Gen 144(1):114–126.  https://doi.org/10.1037/xge0000033 CrossRefGoogle Scholar
  9. Dietvorst BJ, Simmons JP, Massey C (2018) Overcoming algorithm aversion: people will use imperfect algorithms if they can (even slightly) modify them. Manag Sci 64(3):1155–1170.  https://doi.org/10.1287/mnsc.2016.2643 CrossRefGoogle Scholar
  10. Frey CB, Osborne MA (2017) The future of employment: how susceptible are jobs to computerisation? Technol Forecast Soc Change 114:254–280.  https://doi.org/10.1016/j.techfore.2016.08.019 CrossRefGoogle Scholar
  11. Fryer LK, Ainley M, Thompson A, Gibson A, Sherlock Z (2017) Stimulating and sustaining interest in a language course: an experimental comparison of chatbot and human task partners. Comput Hum Behav 75:461–468.  https://doi.org/10.1016/j.chb.2017.05.045 CrossRefGoogle Scholar
  12. Gartner (2019) Gartner predicts 25 percent of digital workers will use virtual employee assistants daily by 2021. https://www.gartner.com/en/newsroom/press-releases/2019-01-09-gartner-predicts-25-percent-of-digital-workers-will-u. Accessed 18 March 2019
  13. Gimpel H (2015) Interview with Thomas W. Malone on “collective intelligence, climate change, and the future of work”. Bus Inf Syst Eng 57(4):275–278.  https://doi.org/10.1007/s12599-015-0382-4 CrossRefGoogle Scholar
  14. Gimpel H, Schmied F (2019) Risks and side effects of digitalization: a multi-level taxonomy of the adverse effects of using digital technologies and media. In: Proceedings of the 27th European Conference on Information Systems (ECIS 2019). https://aisel.aisnet.org/ecis2019_rp/145/
  15. Gnewuch U, Morana S, Maedche A (2017) Towards designing cooperative and social conversational agents for customer service. In: Proceedings of the 38th International Conference on Information Systems (ICIS 2017). Seoul, Korea. https://aisel.aisnet.org/icis2017/HCI/Presentations/1/ 
  16. Goodhue DL, Thompson RL (1995) Task-technology fit and individual performance. MIS Q 19(2):213.  https://doi.org/10.2307/249689 CrossRefGoogle Scholar
  17. Google AI Blog (2018) Google Duplex: an AI system for accomplishing real-world tasks over the phone. https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html. Accessed 18 March 2019
  18. Gregor S (2006) The nature of theory in information systems. MIS Q 30(3):611–642CrossRefGoogle Scholar
  19. Haffke I, Kalgovas B, Benlian A (2017) Options for transforming the IT function using bimodal IT. MIS Q Exec 16(2):101–120Google Scholar
  20. Hattie J (2015) The applicability of visible learning to higher education. Scholarsh Teach Learn Psychol 1(1):79–91.  https://doi.org/10.1037/stl0000021 CrossRefGoogle Scholar
  21. Heinrich L, Heinzl A, Riedl R (2011) Wirtschaftsinformatik: Einführung und Grundlegung. Springer, HeidelbergCrossRefGoogle Scholar
  22. Hess T, Benlian A, Matt C, Wiesböck F (2016) Options for formulating a digital transformation strategy. MIS Q Exec 15(2):123–139.  https://doi.org/10.1108/10878571211209314 Google Scholar
  23. Jung D, Dorner V, Glaser F, Morana S (2018) Robo-advisory: digitalization and automation of financial advisory. Bus Inf Syst Eng 60(1):81–86.  https://doi.org/10.1007/s12599-018-0521-9 CrossRefGoogle Scholar
  24. Laranjo L, Dunn AG, Tong HL, Kocaballi AB, Chen J, Bashir R et al (2018) Conversational agents in healthcare: a systematic review. J Am Med Inform Assoc 25(9):1248–1258.  https://doi.org/10.1093/jamia/ocy072 CrossRefGoogle Scholar
  25. Lipton ZC (2018) The mythos of model interpretability. Commun ACM 61(10):36–43.  https://doi.org/10.1145/3233231 CrossRefGoogle Scholar
  26. Maedche A, Morana S, Schacht S, Werth D, Krumeich J (2016) Advanced user assistance systems. Bus Inf Syst Eng 58(5):367–370.  https://doi.org/10.1007/s12599-016-0444-2 CrossRefGoogle Scholar
  27. Meyer von Wolff R, Hobert S, Schumann M (2019) How May I help you? State of the art and open research questions for chatbots at the digital workplace. In: Proceedings of the 52nd Hawaii International Conference on System Sciences (HICSS 2019), pp 95–104Google Scholar
  28. Mihale-Wilson C, Zibuschka J, Hinz O (2019) User preferences and willingness to pay for in-vehicle assistance. Electron Market 29(1):37–53.  https://doi.org/10.1007/s12525-019-00330-5
  29. OECD (2016) Education at a glance 2016: OECD indicators. ParisGoogle Scholar
  30. Pfeuffer N, Benlian A, Gimpel H, Hinz O (2019) Anthropomorphic information systems. Bus Inf Syst Eng.  https://doi.org/10.1007/s12599-019-00599-y
  31. Qiu L, Benbasat I (2009) Evaluating anthropomorphic product recommendation agents: a social relationship perspective to designing information systems. J Manag Inf Syst 25(4):145–182.  https://doi.org/10.2753/MIS0742-1222250405 CrossRefGoogle Scholar
  32. Rai A, Constantinides P, Sarker S (2019) Next-generation digital platforms: toward human–AI hybrids. MIS Q 43(1):iii–ixGoogle Scholar
  33. Reddy T (2017) How chatbots can help reduce customer service costs by 30%. https://www.ibm.com/blogs/watson/2017/10/how-chatbots-reduce-customer-service-costs-by-30-percent. Accessed 22 March 2019
  34. Riedl R, Benlian A, Hess T, Stelzer D, Sikora H (2017) On the relationship between information management and digitalization. Bus Inf Syst Eng 59(6):475–482.  https://doi.org/10.1007/s12599-017-0498-9 CrossRefGoogle Scholar
  35. Robertson S, Solomon R, Riedl M, Gillespie TW, Chociemski T, Master V, Mohan A (2015) The visual design and implementation of an embodied conversational agent in a shared decision-making context (eCoach). In: Zaphiris P, Ioannou A (eds) Learning and collaboration technologies. Springer, Cham, pp 427–437.  https://doi.org/10.1007/978-3-319-20609-7_40 CrossRefGoogle Scholar
  36. Russel S, Norvig P (2010) Artificial intelligence: a modern approach. Pearson, Upper Saddle RiverGoogle Scholar
  37. Rzepka CC, Berger B (2018) User interaction with AI-enabled systems: a systematic review of IS research. In: Proceedings of the 39th International Conference on Information Systems (ICIS 2018), San Francisco. https://aisel.aisnet.org/icis2018/general/Presentations/7/
  38. Seeber I, Bittner E, Briggs RO, de Vreede G-J, de Vreede T, Druckenmiller D et al (2018) Machines as teammates: a collaboration research agenda.  https://doi.org/10.24251/HICSS.2018.055
  39. Sturm B, Sunyaev A (2019) Design principles for systematic search systems: a holistic synthesis of a rigorous multi-cycle design science research journey. Bus Inf Syst Eng 61(1):91–111.  https://doi.org/10.1007/s12599-018-0569-6 CrossRefGoogle Scholar
  40. Veit D, Clemons E, Benlian A, Buxmann P, Hess T, Kundisch D et al (2014) Geschäftsmodelle. Wirtschaftsinformatik 56(1):55–64.  https://doi.org/10.1007/s11576-013-0400-4 CrossRefGoogle Scholar
  41. vom Brocke J, Maaß W, Buxmann P, Maedche A, Leimeister JM, Pecht G (2018) Future work and enterprise systems. Bus Inf Syst Eng 60(4):357–366.  https://doi.org/10.1007/s12599-018-0544-2 CrossRefGoogle Scholar
  42. Wang W, Benbasat I (2007) Recommendation agents for electronic commerce: effects of explanation facilities on trusting beliefs. J Manag Inf Syst 23(4):217–246.  https://doi.org/10.2753/MIS0742-1222230410 CrossRefGoogle Scholar
  43. Weinmann M, Schneider C, vom Brocke J (2016) Digital nudging. Bus Inf Syst Eng 58(6):433–436.  https://doi.org/10.1007/s12599-016-0453-1 CrossRefGoogle Scholar
  44. Winkler R, Söllner M, Neuweiler ML, Rossini FC, Leimeister JM (2019) Alexa, can you help us solve this problem? How conversations with smart personal assistant tutors increase task group outcomes. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Late-Breaking Work on Human Factors in Computing Systems (CHI LBW ’19)Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Alexander Maedche
    • 1
  • Christine Legner
    • 2
    Email author
  • Alexander Benlian
    • 3
  • Benedikt Berger
    • 4
  • Henner Gimpel
    • 5
    • 6
  • Thomas Hess
    • 4
  • Oliver Hinz
    • 7
  • Stefan Morana
    • 1
  • Matthias Söllner
    • 8
    • 9
  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.HEC - University of LausanneLausanneSwitzerland
  3. 3.Technische Universität DarmstadtDarmstadtGermany
  4. 4.Ludwig-Maximilians-Universität MünchenMunichGermany
  5. 5.University of AugsburgAugsburgGermany
  6. 6.Fraunhofer FITAugsburgGermany
  7. 7.Goethe University FrankfurtFrankfurt am MainGermany
  8. 8.University of KasselKasselGermany
  9. 9.University of St. GallenSt. GallenSwitzerland

Personalised recommendations