Business & Information Systems Engineering

, Volume 6, Issue 5, pp 261–266 | Cite as

Big Data

An Interdisciplinary Opportunity for Information Systems Research
  • Michael Schermann
  • Holmer Hemsen
  • Christoph Buchmüller
  • Till Bitter
  • Helmut Krcmar
  • Volker Markl
  • Thomas Hoeren
Research Notes

Abstract

“Big data” describes technologies that promise to fulfill a fundamental tenet of research in information systems, which is to provide the right information to the right receiver in the right volume and quality at the right time. For information systems research as an application-oriented research discipline, opportunities, and risks arise from using big data. Risks arise primarily from the considerable number of resources used for the explanation and design of fads. Opportunities arise because these resources lead to substantial knowledge gains, which support scientific progress within the discipline and are of relevance to practice as well.

From the authors’ perspective, information systems research is ideally positioned to support big data critically and use the knowledge gained to explain and design innovative information systems in business and administration – regardless of whether big data is in reality a disruptive technology or a cursory fad. The continuing development and adoption of big data will ultimately provide clarity on whether big data is a fad or if it represents substantial progress in information systems research. Three theses also show how future technological developments can be used to advance the discipline of information systems. Technological progress should be used for a cumulative supplement of existing models, tools, and methods. By contrast, scientific revolutions are independent of technological progress.

Keywords

Big data Business information systems Systems engineering Big data hubris Disruptive technology Information management 

References

  1. Agrawal D, Bernstein P, Bertino E, Davidson S, Dayal U, Franklin M, Gehrke J, Haas L, Halevy A, Han J, Jagadish HV, Labrinidis A, Madden S, Papakonstantinou Y, Patel JM, Ramakrishnan R, Ross K, Shahabi C, Suciu D, Vaithyanathan S, Widom J (2012) Challenges and opportunities with big data: a community white paper developed by leading researchers across the United States. Computing Research Association, Washington Google Scholar
  2. American National Standards Institute (1992) American national standard for information systems: database language SQL (ANSI X3.135-1992). American National Standards Institute, Washington Google Scholar
  3. Berglund A, Boag S, Chamberlin D, Fernández MF, Kay M, Robie J, Siméon J (2010) XML path language (XPath) 2.0. World Wide Web Consortium, Cambridge Google Scholar
  4. Boag S, Chamberlin D, Fernández MF, Florescu D, Robie J, Siméon J (2011) XQuery 1.0: an XML query language. World Wide Web Consortium, Cambridge Google Scholar
  5. Brinkkemper S (1996) Method engineering: engineering of information systems development methods and tools. Information and Software Technology 38(4):275–280 CrossRefGoogle Scholar
  6. Buhl HU, Röglinger M, Moser F, Heidemann J (2013) Big data: a fashionable topic with(out) sustainable relevance for research and practice? Business & Information Systems Engineering 55(2):65–69 CrossRefGoogle Scholar
  7. Carpenter J (2011) May the best analyst win. Science 331(6018):698–699 CrossRefGoogle Scholar
  8. Chen H, Chiang RH, Storey VC (2012) Business intelligence and analytics: from big data to big impact. MIS Quarterly 36(4):1165–1188 Google Scholar
  9. Christensen C (1997) The innovator’s dilemma: when new technologies cause great firms to fail. Harvard Business Review, Boston Google Scholar
  10. Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In: Proc 6th symposium on operating system design and implementation, San Francisco Google Scholar
  11. Dreier T, Schulze G (2013) Urheberrechtsgesetz: Urheberrechtswahrnehmungsgesetz, Kunsturhebergesetz. Beck, München Google Scholar
  12. Eberspächer J, Wohlmuth O (eds) (2013) Big Data wird neues Wissen. Münchner Kreis, München Google Scholar
  13. Gasser U (2003) Information quality and the law or how to catch a difficult horse. The Berkman Center for Internet & Society Research, Harvard Law School, Cambridge Google Scholar
  14. Gaster JL (1999) Der Rechtsschutz von Datenbanken: Kommentar zur Richtlinie 96/9/EG mit Erläuterungen zur Umsetzung in das deutsche und österreichische Recht. Heymanns, Köln Google Scholar
  15. Gerhardt B, Griffin K, Klemann R (2012) Unlocking value in the fragmented world of big data analytics: how information infomediaries will create a new data ecosystem. Cisco Internet Business Solutions Group, San Jose Google Scholar
  16. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L (2009) Detecting influenza epidemics using search engine query data. Nature 457(7232):1012–1014 CrossRefGoogle Scholar
  17. Gustafson T, Fink D (2013) Winning within the data value chain. Innosight. http://www.innosight.com/innovation-resources/strategy-innovation/winning-within-the-data-value-chain.cfm. Accessed 2014-02-28
  18. Klass N (2013) Neue Internettechnologien und das Urheberrecht: Die schlichte Einwilligung als Rettungsanker? ZUM – Zeitschrift für Urheber- und Medienrecht 57(1):1–9 Google Scholar
  19. Klein D, Tran-Gia P, Hartmann M (2013) Big data. Informatik Spektrum 36(3):319–323 CrossRefGoogle Scholar
  20. Krcmar H (2009) Informationsmanagement. Springer, Heidelberg Google Scholar
  21. Lazer D, Kennedy R, King G, Vespignani A (2014) The parable of Google Flu: traps in big data analysis. Science 343(3):1203–1205 CrossRefGoogle Scholar
  22. Lehmann M (1992) Produkt- und Produzentenhaftung für Software. NJW – Neue Juristische Wochenschrift 1992(28):1721–1725 Google Scholar
  23. Konstanz LG (1996) Kein Schadensersatz bei Datenverlust durch Stromausfall aufgrund Leitungsbeschädigung bei Baggerarbeiten. NJW – Neue Juristische Wochenschrift 1996(40):2662 Google Scholar
  24. Lycett M (2013) Datafication: making sense of (big) data in a complex world. European Journal of Information Systems 22(4):381–386 CrossRefGoogle Scholar
  25. Mandel M (2012) Beyond goods and services: the (unmeasured) rise of the data-driven economy. Progressive Policy Institute, Washington Google Scholar
  26. Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers AH (2011) Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute, Atlanta Google Scholar
  27. Mayer-Schönberger V, Cukier K (2013) Big data: a revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt, New York Google Scholar
  28. McAfee A (2013) Big data’s biggest challenge? Convincing people NOT to trust their judgment. http://blogs.hbr.org/2013/12/big-datas-biggest-challenge-convincing-people-not-to-trust-their-judgment/. Accessed 2014-02-28
  29. McAfee A, Brynjolfsson E (2012) Big data: the management revolution. Harvard Business Review 2012(October):1–9 Google Scholar
  30. Meyer A (1997) Die Haftung für fehlerhafte Aussagen in wissenschaftlichen Werken. ZUM – Zeitschrift für Urheber- und Medienrecht 41(1):26–33 Google Scholar
  31. Meier K, Wehlau A (1998) Die zivilrechtliche Haftung für Datenlöschung, Datenverlust und Datenzerstörung. NJW – Neue Juristische Wochenschrift 1998(22):1585–1591 Google Scholar
  32. Office of Information and Regulatory Affairs (2002) Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information disseminated by federal agencies. Office of Management and Budget, Executive Office of the President, Washington Google Scholar
  33. Karlsruhe OLG (1996) Haftung für Zerstörung von Computerdaten. NJW – Neue Juristische Wochenschrift 1996(3):200–201 Google Scholar
  34. Prud’hommeaux E, Seaborne A (2008) SPARQL query language for RDF. World Wide Web Consortium, Cambrigde Google Scholar
  35. Reese J (1994) Produkthaftung und Produzentenhaftung für Hard- und Software. DStR – Deutsches Steuerrecht 1994(31):1121–1126 Google Scholar
  36. Schroeck M, Shockley R, Smart J, Romero-Morales D, Tufano P (2012) Analytics: the real-world use of big data. IBM Global Business Services, Somers Google Scholar
  37. Solmecke C, Wahlers J (2012) Rechtliche Situation von Social Media Monitoring-Diensten – Rechtskonforme Lösungen nach dem Datenschutz- und dem Urheberrecht. ZD – Zeitschrift für Datenschutz 2012(12):550–554 Google Scholar
  38. Steininger K, Riedl R, Roithmayr F, Mertens P (2009) Fads and trends in business and information systems engineering and information systems research – a comparative literature analysis. Business & Information Systems Engineering 51(6):411–428 CrossRefGoogle Scholar
  39. The Economist Intelligence Unit (2014) The data storm: retail and the big data revolution. The Economist, London Google Scholar
  40. Thomas JJ, Cook KA (2005) Illuminating the path: the research and development agenda for visual analytics. IEEE Computer Society Press, Washington Google Scholar
  41. Wandtke A-A, Bullinger W (2009) Praxiskommentar zum Urheberrecht. Beck, München Google Scholar
  42. White T (2012) Hadoop – the definitive guide: storage and analysis at internet scale. O’Reilly, Sebastopol Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  • Michael Schermann
    • 1
  • Holmer Hemsen
    • 2
  • Christoph Buchmüller
    • 3
  • Till Bitter
    • 3
  • Helmut Krcmar
    • 1
  • Volker Markl
    • 2
  • Thomas Hoeren
    • 3
  1. 1.Chair for Information Systems (I17)Technische Universität MünchenGarchingGermany
  2. 2.Database Systems and Information Management Group (DIMA)Technische Universität BerlinBerlinGermany
  3. 3.Institut für Informations-, Telekommunikations- und MedienrechtWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations