Business & Information Systems Engineering

, Volume 4, Issue 5, pp 229–246 | Cite as

Quality Marks, Metrics, and Measurement Procedures for Business Process Models

The 3QM-Framework
  • Sven Overhage
  • Dominik Q. Birkmeier
  • Sebastian Schlauderer
Research Paper

Abstract

The availability of high-quality business process models is a central prerequisite for a successful process management. Nevertheless, in practice process models exhibit a large number of quality deficits, among them grammatical, content-related, and stylistic defects. In addition, there exist only very few approaches to determine the quality of business process models. In this paper, we present the 3QM-Framework, an analytical approach to systematically determine the quality of business process models. The 3QM-Framework makes three contributions: it provides quality marks, metrics, and measurement procedures to quantify the quality level as elements of a theoretically justified quality model. The applicability of the 3QM-Framework has been empirically evaluated in case studies. The results of a survey that was conducted among experts moreover attest its practical relevance.

Keywords

Business process modeling Quality model Quality marks Metrics Measurement procedures Design science 

Supplementary material

12599_2012_230_MOESM1_ESM.docx (39 kb)
(DOCX 39 kB)

References

  1. Aczél J, Saaty TL (1983) Procedures for synthesizing ratio judgements. Journal of Mathematical Psychology 27(1):93–102 CrossRefGoogle Scholar
  2. Balzert H (2008) Lehrbuch der Softwaretechnik, Band 2, Softwaremanagement, 2nd edn. Spektrum, Heidelberg Google Scholar
  3. Becker J (2011) Geschäftsprozessmodellierung. In: Kurbel K, Becker J, Gronau N, Sinz E, Suhl L (eds) Enzyklopädie der Wirtschaftsinformatik – Online-Lexikon, 5th edn. Oldenbourg, München Google Scholar
  4. Becker J, Schütte R (2004) Handelsinformationssysteme, 2nd edn. Verlag Moderne Industrie, Frankfurt Google Scholar
  5. Becker J, Rosemann M, Schütte R (1995) Grundsätze ordnungsmäßiger Modellierung. WIRTSCHAFTSINFORMATIK 37(5):435–445 Google Scholar
  6. Becker J, Rosemann M, von Uthmann C (2000) Guidelines of business process modeling. In: Proc business process management conference. Lect Notes Comput Sci, vol 1806. Springer, Berlin, pp 30–49 Google Scholar
  7. Birkmeier DQ, Klöckner S, Overhage S (2010) An empirical comparison of the usability of BPMN and UML activity diagrams for business users. In: Proc 18th European conference on information systems, Pretoria Google Scholar
  8. Burton-Jones A, Wand Y, Weber R (2009) Guidelines for empirical evaluations of conceptual modeling grammars. Journal of the Association for Information Systems 10(6):495–532 Google Scholar
  9. Delfmann P, Herwig S, Lis L (2009) Unified enterprise knowledge representation with conceptual models – capturing corporate language in naming conventions. In: Proc 30th international conference on information systems, Phoenix Google Scholar
  10. Denger C, Olsson T (2005) Quality assurance in requirements engineering. In: Aurum A, Wohlin C (eds) Engineering and managing software requirements. Springer, Berlin, pp 163–186 CrossRefGoogle Scholar
  11. Fellmann M, Hogrebe F, Thomas O, Nüttgens M (2011) Checking the semantic correctness of process models. Enterprise Modelling and Information Systems Architectures 6(3):25–35 Google Scholar
  12. Gemino A, Wand Y (2004) A framework for empirical evaluation of conceptual modeling techniques. Requirements Engineering 9(3):153–168 CrossRefGoogle Scholar
  13. Given LM (2008) The SAGE encyclopedia of qualitative research methods. Sage, Los Angeles Google Scholar
  14. Hadar I, Soffer P (2006) Variations in conceptual modeling: classification and ontological analysis. Journal of the Association for Information Systems 7(8):569–593 Google Scholar
  15. Hevner AR, March ST, Park J, Ram S (2004) Design science in information systems research. Management Information Systems Quarterly 28(1):75–105 Google Scholar
  16. Iivari J (2007) A paradigmatic analysis of information systems as a design science. Scandinavian Journal of Information Systems 19(2):39–64 Google Scholar
  17. Indulska M, Recker J, Rosemann M, Green PF (2008) Representational deficiency of process modelling languages: measures and implications. In: Proc 16th European conference on information systems. Galway, Ireland Google Scholar
  18. ISO/IEC (2000) Quality management systems: fundamentals and vocabulary. ISO/IEC 9000-2000, International Organization for Standardization Google Scholar
  19. ISO/IEC (2001) Software engineering – product quality – part 1: quality model. ISO/IEC Standard 9126-1, International Organization for Standardization Google Scholar
  20. Krogstie J, Sindre G, Jørgensen H (2006) Process models representing knowledge for action: a revised quality framework. European Journal of Information Systems 15(1):91–102 CrossRefGoogle Scholar
  21. Lindland OI, Sindre G, Sølvberg A (1994) Understanding quality in conceptual modeling. IEEE Software 11(2):42–49 CrossRefGoogle Scholar
  22. March ST, Smith GF (1995) Design and natural science research on information technology. Decision Support Systems 15(4):251–266 CrossRefGoogle Scholar
  23. Martin B, Ringham F (2006) Key terms in semiotics. Continuum, New York Google Scholar
  24. McDonald MP, Aron D (2010) Leading in times of transition: the 2010 CIO Agenda. Gartner, Inc Google Scholar
  25. Melenovsky MJ (2005) Business process management’s success hinges on business-led initiatives. Gartner, Inc Google Scholar
  26. Mendling J (2008) Metrics for process models: empirical foundations of verification, error prediction, and guidelines for correctness. Springer, Heidelberg Google Scholar
  27. Mendling J (2009) Empirical studies in process model verification. In: Proc transactions on petri nets and other models of concurrency II. Lect Notes Comput Sci, vol 5460. Springer, Berlin, pp 208–224 CrossRefGoogle Scholar
  28. Mendling J, Reijers HA, van der Aalst WMP (2010) Seven process modeling guidelines (7PMG). Information and Software Technology 52(2):127–136 CrossRefGoogle Scholar
  29. Mendling J, Stremberg M, Recker J (2012) Factors of process model comprehension − findings from a series of experiments. Decision Support Systems 53(1):195–206 CrossRefGoogle Scholar
  30. Mendling J, Verbeek H, van Dongen B, van der Aalst W, Neumann G (2008) Detection and prediction of errors in EPCs of the SAP reference model. Data & Knowledge Engineering 64(1):312–329 CrossRefGoogle Scholar
  31. Moody DL (2005) Theoretical and practical issues in evaluating the quality of conceptual models: current state and future directions. Data & Knowledge Engineering 55(3):243–276 CrossRefGoogle Scholar
  32. Moody DL (2009) The “physics” of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Transactions on Software Engineering 35(6):756–779 CrossRefGoogle Scholar
  33. Moody DL, Shanks GG (1994) What makes a good data model? Evaluating the quality of entity relationship models. In: Proc 13th international conference on the entity-relationship approach, Manchester. Lect Notes Comput Sci, vol 881. Springer, Berlin, pp 94–111 Google Scholar
  34. Moody DL, Sindre G, Brasethvik T, Sølvberg A (2003) Evaluating the quality of information models: empirical testing of a conceptual model quality framework. In: Proc 25th international conference on software engineering, Portland. IEEE Comput Soc, Los Alamitos, pp 295–307 CrossRefGoogle Scholar
  35. Morris CW (1938) Foundations of the theory of signs. The University of Chicago Press, Chicago Google Scholar
  36. Nöth W (1990) Handbook of semiotics. Indiana University Press, Bloomington Google Scholar
  37. OMG (2003) UML 2.0 superstructure specification. Adopted specification, ptc/03-08-02, Object Management Group Google Scholar
  38. OMG (2007) Business process model and notation (BPMN) 2.0. Request for proposal. BMI/2007-06-05, Object Management Group Google Scholar
  39. Overhage S, Schlauderer S, Birkmeier D (2011) Sind Ereignisgesteuerte Prozessketten besser für Fachanwender geeignet als UML Aktivitätsdiagramme? Eine empirische Untersuchung. In: Proc 10th international conference on Wirtschaftsinformatik, Zürich, vol 2, pp 745–755 Google Scholar
  40. Overhage S, Schlauderer S, Birkmeier D (2012) Sagt ein Geschäftsprozessdiagramm mehr als tausend Worte? Eine empirische Studie zur Verwendbarkeit von EPK und Normsprache für Fachanwender. Universität Augsburg, Augsburg Google Scholar
  41. Patig S, Casanova-Brito V, Vögeli B (2010) IT requirements of business process management in practice – an empirical study. In: Proc 8th business process management conference, Hoboken. Lect Notes Comput Sci, vol 6336. Springer, Heidelberg, pp 13–28 Google Scholar
  42. Poels G, Maes A, Gailly F, Paemeleire R (2005) Measuring the perceived semantic quality of information models. In: Proc ER Workshops AOIS, BP-UML, CoMoGIS, eCOMO, and QoIS, Klagenfurt. Lect Notes Comput Sci. Springer, Heidelberg, pp 376–385 Google Scholar
  43. Recker J, Indulska M, Rosemann M, Green P (2009) Business process modeling – a comparative analysis. Journal of the Association for Information Systems 10(4):333–363 Google Scholar
  44. Recker J, Rosemann M, Green PF, Indulska M (2011) Do ontological deficiencies in modeling grammars matter? Management Information Systems Quarterly 35(1):57–79 Google Scholar
  45. Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill, New York Google Scholar
  46. Saaty TL (1986) Axiomatic foundation of the analytic hierarchy process. Management Science 32(7):841–855 CrossRefGoogle Scholar
  47. Saaty TL (1994) How to make a decision: the analytic hierachy process. Interfaces 24(6):19–43 CrossRefGoogle Scholar
  48. Scheer AW, Thomas O, Adam O (2005) Process modeling using event-driven process chains. In: Dumas M, van der Aalst WMP, Hofstede AHM (eds) Bridging people and software through process technology. Wiley, Hoboken Google Scholar
  49. Schütte R (1998) Vergleich alternativer Ansätze zur Bewertung der Informationsmodellqualität. In: Proc Fachtagung Modellierung betrieblicher Informationssysteme, Koblenz Google Scholar
  50. Schütte R, Rotthowe T (1998) The guidelines of modeling – an approach to enhance the quality in information models. In: Proc 17th international conference on conceptual modeling, Singapore. Lect Notes Comput Sci, vol 1507. Springer, Heidelberg, pp 240–254 Google Scholar
  51. Sebeok TA (2001) Signs: an introduction to semiotics, 2nd edn. University of Toronto Press, Toronto Google Scholar
  52. Sebeok TA, Danesi M (2000) The forms of meaning: modeling systems theory and semiotic analysis. de Gruyter, Berlin Google Scholar
  53. Sebeok TA, Danesi M (eds) (2010) Encyclopedic dictionary of semiotics: N-Z. de Gruyter, Berlin Google Scholar
  54. Shanks GG, Darke P (1997) Quality in conceptual modelling: linking theory and practice. In: Proc 3rd Pacific Asia conference on information systems, Brisbane, pp 805–814 Google Scholar
  55. Sommerville I (1992) Software engineering, 4th edn. Addison-Wesley, Wokingham Google Scholar
  56. Takeda H, Veerkamp P, Tomiyama T, Yoshikawa H (1990) Modeling design processes. AI Magazine 11(4):37–48 Google Scholar
  57. Vaishnavi V, Kuechler W (2004) Design science research in information systems. http://ais.affiniscape.com/displaycommon.cfm?an=1&subarticlenbr=279
  58. Vanderfeesten I, Cardoso J, Mendling J, Reijers HA, van der Aalst W (2007) Quality metrics for business process models. In: Fischer L (ed) BPM & workflow handbook 2007: future strategies, Lighthouse Point, pp 179–190 Google Scholar
  59. Weske M (2007) Business process management: concepts, languages, architectures. Springer, Berlin Google Scholar

Copyright information

© Gabler Verlag 2012

Authors and Affiliations

  • Sven Overhage
    • 1
  • Dominik Q. Birkmeier
    • 1
  • Sebastian Schlauderer
    • 1
  1. 1.Chair of Business Information Systems & Systems EngineeringUniversity of AugsburgAugsburgGermany

Personalised recommendations