Advertisement

Rare Metals

pp 1–13 | Cite as

Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review

  • Yi-Ru Ji
  • Su-Ting Weng
  • Xin-Yan Li
  • Qing-Hua Zhang
  • Lin GuEmail author
Article

Abstract

Owing to the high spatial resolution at the atomic scale, the transmission electron microscopy (TEM) or scanning transmission electron microscopy is demonstrated as a promising characterization method to unveil the charge storage mechanism of electrode materials in Li-ion batteries. The structural evolution of electrode materials during charge/discharge process can be directly observed by using TEM. The detailed analysis establishes a relationship between the structure of electrode material and battery performance. Herein, we present a brief review of the atomic-scale characterization in Li-ion batteries, including Li (de)insertion mechanism (both cations and anions charge-compensation mechanism), migration of transition metal ions, and surface phase transition. The in-depth microscopic analysis reveals the detailed structural characteristics, which influence the properties of LIBs, establish the structure–function relationship, and facilitate the development of Li-ion batteries.

Keywords

Li (de)insertion mechanism Migration of transition metal ions Surface structural evolution 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51672307 and 51421002), the Strategic Priority Research Program of Chinese Academy of Sciences (CAS) (No. XDB07030200) and the Key Research Program of Frontier Sciences, CAS (No. QYZDB-SSW-JSC035).

References

  1. [1]
    Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652.CrossRefGoogle Scholar
  2. [2]
    Pennycook SJ, Boatner LA. Chemically sensitive structure-imaging with a scanning-transmission electron-microscope. Nature. 1988;336(6199):565.CrossRefGoogle Scholar
  3. [3]
    Findlay SD, Shibata N, Sawada H, Okunishi E, Kondo Y, Ikuhara Y. Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy. 2010;110(7):903.CrossRefGoogle Scholar
  4. [4]
    Oshima Y, Sawada H, Hosokawa F, Okunishi E, Kaneyama T, Kondo Y, Niitaka S, Takagi H, Tanishiro Y, Takayanagi K. Direct imaging of lithium atoms in LiV2O4 by spherical aberration-corrected electron microscopy. J Electron Microsc (Tokyo). 2010;59(6):457.CrossRefGoogle Scholar
  5. [5]
    Lu X, Jian Z, Fang Z, Gu L, Hu Y-S, Chen W, Wang Z, Chen L. Atomic-scale investigation on lithium storage mechanism in TiNb2O7. Energy Environ Sci. 2011;4(8):2638.CrossRefGoogle Scholar
  6. [6]
    Lee J, Zhou W, Idrobo JC, Pennycook SJ, Pantelides ST. Vacancy-driven anisotropic defect distribution in the battery-cathode material LiFePO4. Phys Rev Lett. 2011;107(8):5507.CrossRefGoogle Scholar
  7. [7]
    Huang R, Ikuhara YH, Mizoguchi T, Findlay SD, Kuwabara A, Fisher CA, Moriwake H, Oki H, Hirayama T, Ikuhara Y. Oxygen-vacancy ordering at surfaces of lithium manganese(III, IV) oxide spinel nanoparticles. Angew Chem Int Ed Engl. 2011;50(13):3053.CrossRefGoogle Scholar
  8. [8]
    Huang R, Hitosugi T, Findlay SD, Fisher CAJ, Ikuhara YH, Moriwake H, Oki H, Ikuhara Y. Real-time direct observation of Li in LiCoO2 cathode material. Appl Phys Lett. 2011;98(5):051913.CrossRefGoogle Scholar
  9. [9]
    Gao X, Fisher CAJ, Kimura T, Ikuhara YH, Moriwake H, Kuwabara A, Oki H, Tojigamori T, Huang R, Ikuhara Y. Lithium atom and A-site vacancy distributions in lanthanum lithium titanate. Chem Mater. 2013;25(9):1607.CrossRefGoogle Scholar
  10. [10]
    Gu L, Zhu C, Li H, Yu Y, Li C, Tsukimoto S, Maier J, Ikuhara Y. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. J Am Chem Soc. 2011;133(13):4661.CrossRefGoogle Scholar
  11. [11]
    Suo L, Han W, Lu X, Gu L, Hu YS, Li H, Chen D, Chen L, Tsukimoto S, Ikuhara Y. Highly ordered staging structural interface between LiFePO4 and FePO4. Phys Chem Chem Phys. 2012;14(16):5363.CrossRefGoogle Scholar
  12. [12]
    Sun Y, Lu X, Xiao R, Li H, Huang X. Kinetically controlled lithium-staging in delithiated LiFePO4. Driven by the Fe center mediated interlayer Li–Li interactions. Chem Mater. 2012;24(24):4693.CrossRefGoogle Scholar
  13. [13]
    Zhu C, Gu L, Suo L, Popovic J, Li H, Ikuhara Y, Maier J. Size-dependent staging and phase transition in LiFePO4/FePO4. Adv Func Mater. 2014;24(3):312.CrossRefGoogle Scholar
  14. [14]
    Niu J, Kushima A, Qian X, Qi L, Xiang K, Chiang Y-M, Li J. In situ observation of random solid solution zone in LiFePO4 electrode. Nano Lett. 2014;14(7):4005.CrossRefGoogle Scholar
  15. [15]
    Zhu Y, Wang JW, Liu Y, Liu X, Kushima A, Liu Y, Xu Y, Mao SX, Li J, Wang C, Huang JY. In situ atomic-scale imaging of phase boundary migration in FePO4 microparticles during electrochemical lithiation. Adv Mater. 2013;25(38):5461.CrossRefGoogle Scholar
  16. [16]
    Liu XH, Zheng H, Zhong L, Huang S, Karki K, Zhang LQ, Liu Y, Kushima A, Liang WT, Wang JW, Cho JH, Epstein E, Dayeh SA, Picraux ST, Zhu T, Li J, Sullivan JP, Cumings J, Wang C, Mao SX, Ye ZZ, Zhang S, Huang JY. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 2011;11(8):3312.CrossRefGoogle Scholar
  17. [17]
    He K, Zhang S, Li J, Yu X, Meng Q, Zhu Y, Hu E, Sun K, Yun H, Yang XQ, Zhu Y, Gan H, Mo Y, Stach EA, Murray CB, Su D. Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy. Nat Commun. 2016;7:11441.CrossRefGoogle Scholar
  18. [18]
    Wang F, Yu HC, Chen MH, Wu L, Pereira N, Thornton K, Van der Ven A, Zhu Y, Amatucci GG, Graetz J. Tracking lithium transport and electrochemical reactions in nanoparticles. Nat Commun. 2012;3:1201.CrossRefGoogle Scholar
  19. [19]
    Gong Y, Chen Y, Zhang Q, Meng F, Shi JA, Liu X, Liu X, Zhang J, Wang H, Wang J, Yu Q, Zhang Z, Xu Q, Xiao R, Hu YS, Gu L, Li H, Huang X, Chen L. Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery. Nat Commun. 2018;9:3341.CrossRefGoogle Scholar
  20. [20]
    Gong Y, Zhang J, Jiang L, Shi JA, Zhang Q, Yang Z, Zou D, Wang J, Yu X, Xiao R, Hu YS, Gu L, Li H, Chen L. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery. J Am Chem Soc. 2017;139(12):4274.CrossRefGoogle Scholar
  21. [21]
    Lu J, Wu T, Amine K. State-of-the-art characterization techniques for advanced lithium-ion batteries. Nat Energy. 2017;2(3):17011.CrossRefGoogle Scholar
  22. [22]
    Lu X, Zhao L, He X, Xiao R, Gu L, Hu YS, Li H, Wang Z, Duan X, Chen L, Maier J, Ikuhara Y. Lithium storage in Li4Ti5O12 spinel: the full static picture from electron microscopy. Adv Mater. 2012;24(24):3233.CrossRefGoogle Scholar
  23. [23]
    Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J Electrochem Soc. 1995;142(5):1431.CrossRefGoogle Scholar
  24. [24]
    Ferg E, Gummow RJ, Dekock A, Thackeray MM. Spinel anodes for lithium anodes for lithium-ion batteries. J Electrochem Soc. 1994;141(11):L147.CrossRefGoogle Scholar
  25. [25]
    Slater MD, Kim D, Lee E, Johnson CS. Sodium-ion batteries. Adv Func Mater. 2013;23(8):947.CrossRefGoogle Scholar
  26. [26]
    Pan H, Hu YS, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci. 2013;6(8):2338.CrossRefGoogle Scholar
  27. [27]
    Zhao L, Pan HL, Hu YS, Li H, Chen LQ. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery. Chin Phys B. 2012;21(2):8201.Google Scholar
  28. [28]
    Sun Y, Zhao L, Pan H, Lu X, Gu L, Hu YS, Li H, Armand M, Ikuhara Y, Chen L, Huang X. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat Commun. 2013;4:1870.CrossRefGoogle Scholar
  29. [29]
    Sathiya M, Ramesha K, Rousse G, Foix D, Gonbeau D, Prakash AS, Doublet ML, Hemalatha K, Tarascon JM. High performance Li2Ru1−yMnyO3 (0.2 ≤ y ≤ 0.8) cathode materials for rechargeable lithium-ion batteries: their understanding. Chem Mater. 2013;25(7):1121.CrossRefGoogle Scholar
  30. [30]
    Sathiya M, Rousse G, Ramesha K, Laisa CP, Vezin H, Sougrati MT, Doublet ML, Foix D, Gonbeau D, Walker W, Prakash AS, Ben Hassine M, Dupont L, Tarascon JM. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat Mater. 2013;12(9):827.CrossRefGoogle Scholar
  31. [31]
    Sathiya M, Abakumov AM, Foix D, Rousse G, Ramesha K, Saubanere M, Doublet ML, Vezin H, Laisa CP, Prakash AS, Gonbeau D, VanTendeloo G, Tarascon JM. Origin of voltage decay in high-capacity layered oxide electrodes. Nat Mater. 2015;14(2):230.CrossRefGoogle Scholar
  32. [32]
    McCalla E, Abakumov AM, Saubanere M, Foix D, Berg EJ, Rousse G, Doublet ML, Gonbeau D, Novak P, Van Tendeloo G, Dominko R, Tarascon JM. Visualization of O–O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science. 2015;350(6267):1516.CrossRefGoogle Scholar
  33. [33]
    Lee J, Urban A, Li X, Su D, Hautier G, Ceder G. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science. 2014;343(6170):519.CrossRefGoogle Scholar
  34. [34]
    Zhao E, He L, Wang B, Li X, Zhang J, Wu Y, Chen J, Zhang S, Liang T, Chen Y, Yu X, Li H, Chen L, Huang X, Chen H, Wang F. Structural and mechanistic revelations on high capacity cation-disordered Li-rich oxides for rechargeable Li-ion batteries. Energy Storage Mater. 2019;16:354.CrossRefGoogle Scholar
  35. [35]
    Liu X, Gu L. Advanced transmission electron microscopy for electrode and solid-electrolyte materials in lithium-ion batteries. Small Methods. 2018;2(8):1800006.CrossRefGoogle Scholar
  36. [36]
    Wen Y, Shang T, Gu L. Analytical ABF-STEM imaging of Li ions in rechargeable batteries. Microscopy. 2017;66(1):25.Google Scholar
  37. [37]
    Oshima Y, Lee S, Takayanagi K. Visualization of lithium ions by annular bright field imaging. Microscopy. 2017;66(1):15.Google Scholar
  38. [38]
    Findlay SD, Huang R, Ishikawa R, Shibata N, Ikuhara Y. Direct visualization of lithium via annular bright field scanning transmission electron microscopy: a review. Microscopy. 2017;66(1):3.Google Scholar
  39. [39]
    Gu L, Xiao D, Hu YS, Li H, Ikuhara Y. Atomic-scale structure evolution in a quasi-equilibrated electrochemical process of electrode materials for rechargeable batteries. Adv Mater. 2015;27(13):2134.CrossRefGoogle Scholar
  40. [40]
    Xiao D, Gu L. Atomic-scale structure of nearly-equilibrated electrode materials under lithiation/delithiation for lithium-ion batteries. Scientia Sinica Chimica. 2014;44(3):295.CrossRefGoogle Scholar
  41. [41]
    Wang R, He X, He L, Wang F, Xiao R, Gu L, Li H, Chen L. Atomic structure of Li2MnO3 after partial delithiation and re-lithiation. Adv Energy Mater. 2013;3(10):1358.CrossRefGoogle Scholar
  42. [42]
    Yu DYW, Yanagida K. Structural analysis of Li2MnO3 and related Li–Mn–O materials. J Electrochem Soc. 2011;158(9):A1015.CrossRefGoogle Scholar
  43. [43]
    Susai FA, Sclar H, Shilina Y, Penki TR, Raman R, Maddukuri S, Maiti S, Halalay IC, Luski S, Markovsky B, Aurbach D. Horizons for Li-ion batteries relevant to electro-mobility: high-specific-energy cathodes and chemically active separators. Adv Mater. 2018;30(41):1801348.CrossRefGoogle Scholar
  44. [44]
    Liang C, Kong F, Longo RC, Kc S, Kim JS, Jeon S, Choi S, Cho K. Unraveling the origin of instability in Ni-rich LiNi1−2xCoxMnxO2 (NCM) cathode materials. J Phys Chem C. 2016;120(12):6383.CrossRefGoogle Scholar
  45. [45]
    Yan P, Zheng J, Zhang JG, Wang C. Atomic resolution structural and chemical imaging revealing the sequential migration of Ni Co, and Mn upon the battery cycling of layered cathode. Nano Lett. 2017;17(6):3946.CrossRefGoogle Scholar
  46. [46]
    Lin Q, Guan W, Meng J, Huang W, Wei X, Zeng Y, Li J, Zhang Z. A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries. Nano Energy. 2018;54:313.CrossRefGoogle Scholar
  47. [47]
    Lu X, Sun Y, Jian Z, He X, Gu L, Hu YS, Li H, Wang Z, Chen W, Duan X, Chen L, Maier J, Tsukimoto S, Ikuhara Y. New insight into the atomic structure of electrochemically delithiated O3–Li(1–x)CoO2 (0 ≤ x ≤ 0.5) nanoparticles. Nano Lett. 2012;12(12):6192.CrossRefGoogle Scholar
  48. [48]
    Lin F, Markus IM, Nordlund D, Weng T-C, Asta MD, Xin HL, Doeff MM. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat Commun. 2014;5:3529.CrossRefGoogle Scholar
  49. [49]
    Zheng H, Sun Q, Liu G, Song X, Battaglia VS. Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells. J Power Sour. 2012;207:134.CrossRefGoogle Scholar
  50. [50]
    Ryu HH, Park KJ, Yoon CS, Sun YK. Capacity fading of Ni-rich Li[NixCoyMn1–xy]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem Mater. 2018;30(3):1155.CrossRefGoogle Scholar
  51. [51]
    Schipper F, Dixit M, Kovacheva D, Talianker M, Haik O, Grinblat J, Erickson EM, Ghanty C, Major DT, Markovsky B, Aurbach D. Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2. J Mater Chem A. 2016;4(41):16073.CrossRefGoogle Scholar
  52. [52]
    Chen JS, Wang LF, Fang BJ, Lee SY, Guo RZ. Rotating ring-disk electrode measurements on Mn dissolution and capacity losses of spinel electrodes in various organic electrolytes. J Power Sour. 2006;157(1):515.CrossRefGoogle Scholar
  53. [53]
    Wang LF, Ou CC, Striebel KA, Chen JJS. Study of mn dissolution from LiMn2O4 spinel electrodes using rotating ring-disk collection experiments. J Electrochem Soc. 2003;150(7):A905.CrossRefGoogle Scholar
  54. [54]
    Tang D, Sun Y, Yang Z, Ben L, Gu L, Huang X. Surface structure evolution of LiMn2O4 cathode material upon charge/discharge. Chem Mater. 2014;26(11):3535.CrossRefGoogle Scholar
  55. [55]
    Tang D, Ben L, Sun Y, Chen B, Yang Z, Gu L, Huang X. Electrochemical behavior and surface structural change of LiMn2O4 charged to 5.1 V. J Mater Chem A. 2014;2(35):14519.CrossRefGoogle Scholar
  56. [56]
    Ben LB, Yu HL, Chen B, Chen YY, Gong Y, Yang XA, Gu L, Huang XJ. Unusual spinel-to-layered transformation in LiMn2O4 cathode explained by electrochemical and thermal stability investigation. ACS Appl Mater Int. 2017;9(40):35463.CrossRefGoogle Scholar
  57. [57]
    Hu LH, Wu FY, Lin CT, Khlobystov AN, Li LJ. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat Commun. 2013;4:1687.CrossRefGoogle Scholar
  58. [58]
    Jung SK, Kim H, Cho MG, Cho SP, Lee B, Kim H, Park YU, Hong J, Park KY, Yoon G, Seong WM, Cho Y, Oh MH, Kim H, Gwon H, Hwang I, Hyeon T, Yoon WS, Kang K. Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries. Nat Energy. 2017;2(2):16208.CrossRefGoogle Scholar
  59. [59]
    Lozano JG, Martinez GT, Jin L, Nellist PD, Bruce PG. Low-dose aberration-free imaging of Li-rich cathode materials at various states of charge using electron ptychography. Nano Lett. 2018;18(11):6850.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Songshan Lake Materials LaboratoryDongguanChina

Personalised recommendations