Advertisement

Rare Metals

pp 1–11 | Cite as

Prospect of developing Nd–Fe–B-type magnet with high electrical resistivity

  • Hae-Woong KwonEmail author
  • Min-Seok Kang
Article
  • 15 Downloads

Abstract

Nd–Fe–B-type magnet is exclusively used as a rotor magnet in the traction motor of hybrid electric vehicle (HEV) and electric vehicle (EV), but its overly high operating temperature is a lingering problem attached to the magnet. The major cause of the high operating temperature is eddy current, which is readily generated in the highly conductive metallic magnet under alternating magnetic field from stator ripple. In this article, temperature rise in the Nd–Fe–B-type magnet with varying electrical resistivity under alternating magnetic field is discussed with the intention of highlighting the importance of enhancing the electrical resistivity for reducing the operating temperature of the Nd–Fe–B-type rotor magnet. Temperature rise in the Nd–Fe–B-type magnet (dielectric salt-added die-upset magnet) with high electrical resistivity is noticeably lower compared to the magnet (commercial sintered rotor magnet) with lower electrical resistivity, substantiating the theory that enhancing the electrical resistivity in the rotor magnet is fairly effective for suppressing the over-rise of its operating temperature during operation. Die-upset process is revealed to be particularly pertinent for the fabrication of highly dense salt-added magnet with high electrical resistivity.

Graphic abstract

Keywords

Rare-earth magnet Nd–Fe–B-type magnet Rotor magnet Operating temperature Eddy current Electrical resistivity 

Notes

Acknowledgements

This work was financially supported by the Technology Innovation Program from the Ministry of Trade, Industry and Energy (MOTIE, Korea) (No. 10080382). The authors would also like to extend thanks to Professor K. H. Shin in Kyungsung University for invaluable assistance for evaluating the temperature rise in a magnet.

References

  1. [1]
    Sagawa M, Fujimura S, Yamamoto H, Matsuura Y, Hiraga K. Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds. IEEE Trans Magn. 1984;20(5):1584.CrossRefGoogle Scholar
  2. [2]
    Koon NC, Das BN, Rubinstein M, Tyson J. Magnetic properties of R2Fe14B single crystals. J Appl Phys. 1985;57(8):4091.CrossRefGoogle Scholar
  3. [3]
    Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals. J Appl Phys. 1986;59(3):873.CrossRefGoogle Scholar
  4. [4]
    Hirosawa S, Tokuhara K, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M. The dependence of coercivity on anisotropy field in sintered R-Fe-B permanent magnet. J Magn Magn Mater. 1986;61(3):363.CrossRefGoogle Scholar
  5. [5]
    Hamada N, Noguchi K, Mishima C, Honkura Y. Development of anisotropic bonded magnet applied to 150 °C use. IEEE Trans Magn. 2005;41(10):3847.CrossRefGoogle Scholar
  6. [6]
    Nakamura H, Hirota K, Shimao M, Minowa T, Honshima M. Magnetic properties of extremely small Nd–Fe–B sintered magnets. IEEE Trans Magn. 2005;41(10):3844.CrossRefGoogle Scholar
  7. [7]
    Hirota K, Nakamura H, Minowa T, Honshima M. Coercivity enhancement by the grain boundary diffusion process to Nd–Fe–B sintered magnets. IEEE Trans Magn. 2006;42(10):2909.CrossRefGoogle Scholar
  8. [8]
    Nakamura H, Hirota K, Minowa T, Honshima M. Coercivity of Nd–Fe–B based sintered magnet grain boundary diffusion treated with various rare earth compounds. J Magn Soc Jpn. 2007;31(1):6 (in Japanese).CrossRefGoogle Scholar
  9. [9]
    Sepehri-Amin H, Ohkubo T, Hono K. The mechanism of coercivity enhancement by the grain boundary diffusion process of Nd–Fe–B sintered magnet. Acta Mater. 2013;61(6):1982.CrossRefGoogle Scholar
  10. [10]
    Sawatzki S, Kubel C, Ener S, Gutfleisch O. Grain boundary diffusion in nanocrystalline Nd–Fe–B magnets with low-melting eutectics. Acta Mater. 2016;115:354.CrossRefGoogle Scholar
  11. [11]
    Zhang T, Chen F, Zheng Y, Wen H, Zhang L, Zhou L. Anisotropic behavior of grain boundary diffusion in hot-deformed Nd–Fe–B magnet. Scr Mater. 2017;129:1.CrossRefGoogle Scholar
  12. [12]
    Salazar D, Martin-Cid A, Madugundo R, Barandiaran JM, Hadjipanayis GC. Coercivity enhancement in heavy rare earth-free NdFeB magnets by grain boundary diffusion process. Appl Phys Lett. 2018;113(15):152402.CrossRefGoogle Scholar
  13. [13]
    Tokunaga M, Endoh M, Harada H. Nd–Fe–B sintered magnets with Ga addition. J Jpn Soc Powder Powder Metall. 1987;34(9):98.CrossRefGoogle Scholar
  14. [14]
    Ahmad I, Davies HA, Buckley RA. Ultra high coercivity Nd–Fe–B permanent magnet alloy with small addition of Ga. Mater Lett. 1994;20(3):139.CrossRefGoogle Scholar
  15. [15]
    Pandian S, Chandrasekaran V. Effect of Al, Cu, Ga and Nb additions on the magnetic properties and microstructural features of sintered NdFeB. J Appl Phys. 2002;92(10):6082.CrossRefGoogle Scholar
  16. [16]
    Popov AG, Puzanowa TZ, Gaviko VS, Vasilenko DY, Vyatkin VP. Formation of a high-coercivity state in sintered Nd–Fe–B–Ga magnets by thermocycling. Phys Met Metallogr. 2006;101(6):538.CrossRefGoogle Scholar
  17. [17]
    Xu XD, Sasaki TT, Li JN, Dong ZJ, Sepehri-Amin H, Kim TH, Ohkubo T, Schrefl T, Hono K. Microstructure of a Dy-free Nd–Fe–B sintered magnet with 2T coercivity. Acta Mater. 2018;156:146.CrossRefGoogle Scholar
  18. [18]
    Uestuener K, Katter M, Rodewald W. Dependence of the mean grain size and coercivity of sintered Nd–Fe–B magnets on the initial powder particle size. IEEE Trans Magn. 2006;42(10):2897.CrossRefGoogle Scholar
  19. [19]
    Dajaku G, Gerling D. An accurate electromagnetic and thermal analysis of electric machines for hybrid electric vehicle application. In: The 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exposition, Yokohama, Japan. 2006, 1.Google Scholar
  20. [20]
    Kim J. Spray cooling heat transfer: the state of the art. Int J Heat Fluid Flow. 2007;28(4):753.CrossRefGoogle Scholar
  21. [21]
    Magnussen F, Lendenmann H. Parasitic effects in PM Machines with concentrated windings. IEEE Trans Ind Appl. 2007;43(5):1223.CrossRefGoogle Scholar
  22. [22]
    Choe YY, Oh SY, Ham SH, Jang IS, Cho SY, Lee J, Ko KC. Comparison of concentrated and distributed winding in an IPMSM for vehicle traction. Energy Procedia. 2012;14:1368.CrossRefGoogle Scholar
  23. [23]
    Li J, Choi DW, Son DH, Cho YH. Effect of MMF harmonics on rotor eddy-current losses for inner-rotor fractional slot axial flux permanent magnet synchronous machines. IEEE Trans Magn. 2012;48(2):839.CrossRefGoogle Scholar
  24. [24]
    Nollau A, Gerling D. A new cooling approach for traction motors in hybrid drives. In: International Electric Machines and Drives Conference, Chicago, USA; 2013, 456.Google Scholar
  25. [25]
    Hou Y, Liu X, Liu J, Li M, Pu L. Experimental study on phase change spray cooling. Exp Thermal Fluid Sci. 2013;46:84.CrossRefGoogle Scholar
  26. [26]
    Mizuno S, Noda S, Matsushita M, Koyama T, Shiraishi S. Development of a totally enclosed fan-cooled traction motor. IEEE Trans Ind Appl. 2013;49(4):1508.CrossRefGoogle Scholar
  27. [27]
    Lindh P, Petrov I, Jaatinen A, Grönman A, MartinezIturralde M, Satrústegui M, Pyrhönen J. Direct liquid cooling method verified with an axial-flux permanent-magnet traction machine prototype. IEEE Trans Ind Electron. 2017;64(8):6086.CrossRefGoogle Scholar
  28. [28]
    Itoh K, Hashiba Y, Sakai K, Yagisawa T. The A.C. losses of the rare-earth permanent magnets. Trans Inst Electr Eng Jpn. 1998;118(2):182.Google Scholar
  29. [29]
    Polinder H, Hoeijmakers MJ. Eddy-current losses in the segmented surface-mounted magnets of a PM machine. IEE Proc Electr Power Appl. 1999;146(3):261.CrossRefGoogle Scholar
  30. [30]
    Yoshida K, Hita Y, Kesamaru K. Eddy-current loss analysis in PM of surface-mounted-PM SM for electric vehicles. IEEE Trans Magn. 2000;34(4):1941.CrossRefGoogle Scholar
  31. [31]
    Zhu ZQ, Ng K, Schofield N, Howe D. Improved analytical modelling of rotor eddy current loss in brushless machines equipped with surface mounted permanent magnets. IEE Proc Electr Power Appl. 2004;151(6):641.CrossRefGoogle Scholar
  32. [32]
    Amara Y, Wang J, Howe D. Analytical prediction of eddy-current loss in modular tubular permanent-magnet machines. IEEE Trans Energy Convers. 2005;20(4):761.CrossRefGoogle Scholar
  33. [33]
    Fukuma A, Kanazawa S, Miyagi S, Takahashi N. Investigation of AC loss of permanent magnet of SPM motor considering hysteresis and eddy-current losses. IEEE Trans Magn. 2005;41(5):1964.CrossRefGoogle Scholar
  34. [34]
    Aoyama Y, Miyata K, Ohashi K. Simulations and experiments on eddy current in Nd–Fe–B magnet. IEEE Trans Magn. 2005;41(10):3790.CrossRefGoogle Scholar
  35. [35]
    Komuro M, Satsu Y, Enomoto Y, Koharagi H. High electrical resistance hot-pressed NdFeB magnet for low loss motors. Appl Phys Lett. 2007;91(10):102503.CrossRefGoogle Scholar
  36. [36]
    Polinder H, Hoeijmakers MJ, Scuotto M. Eddy-current losses in the solid back-iron of PM machines for different concentrated fractional pitch winding. In: IEEE International Electric Machines and Drives Conference. Antalya, Turkey. 2007:652.Google Scholar
  37. [37]
    Ede JD, Atallah K, Jewell GW, Wang JB, Howe D. Effect of axial segmentation of permanent magnets on rotor loss in modular permanent-magnet brushless machines. IEEE Trans Ind Appl. 2007;43(5):1207.CrossRefGoogle Scholar
  38. [38]
    Sergeant P, Bossche AVD. Segmentation of magnets to reduce losses in permanent-magnet synchronous machines. IEEE Trans Magn. 2008;44(11):4409.CrossRefGoogle Scholar
  39. [39]
    Nuscheler R. Two-dimensional analytical model for eddy current loss calculation in the magnets and solid rotor yokes of permanent magnet synchronous machines. In: 18th International Conference on Electric Machines. Vilamoura, Portugal. 2008: 1095.Google Scholar
  40. [40]
    Wills DA, Kamper MJ. Reducing PM eddy current rotor losses by partial magnet and rotor yoke segmentation. In: The International Conference on Electrical Machines, Rome, Italy. 2010.Google Scholar
  41. [41]
    Yokoyama Y, Iwata K, Fujiwara K, Takahashi N, Kubo T. Basic study on loss of permanent magnet due to AC field. National Convention Record IEE Japan. 2001: 2.Google Scholar
  42. [42]
    Aoyama Y, Ohashi K, Miyata K. Experiment and analysis of eddy current loss in permanent magnet under alternating magnetic field. Papers of technical meeting on rotating machinery, IEE Japan, 2002;135: 13.Google Scholar
  43. [43]
    Kanazawa S, Takahashi N, Kubo T. Measurement and analysis of AC loss of NdFeB sintered magnet. IEE J Trans Fund Mater. 2006;154(4):869.Google Scholar
  44. [44]
    Zhao N, Zhu ZQ, Liu W. Rotor eddy current loss calculation and thermal analysis of permanent magnet motor and generator. IEEE Trans Magn. 2011;47(10):4199.CrossRefGoogle Scholar
  45. [45]
    Atallah K, Wang J, Howe D. Torque-ripple minimization in modular permanent-magnet brushless machines. IEEE Trans Ind Appl. 2003;39(6):1689.CrossRefGoogle Scholar
  46. [46]
    Wrobel R, Mellor PH. Design considerations of a direct drive brushless machine with concentrated windings. IEEE Trans Energy Convers. 2008;23(1):1.CrossRefGoogle Scholar
  47. [47]
    Yamazaki K, Shina M, Kanou Y, Miwa M, Hagiwara J. Effect of eddy current loss reduction by segmentation of magnets in synchronous motors: difference between interior and surface types. IEEE Trans Magn. 2009;45(10):4756.CrossRefGoogle Scholar
  48. [48]
    Mirzaei M, Binder A, Funieru B, Susic M. Analytical calculations of induced eddy currents losses in the magnets of surface mounted PM machines with consideration of circumferential and axial segmentation effects. IEEE Trans Magn. 2012;48(12):4831.CrossRefGoogle Scholar
  49. [49]
    Komuro M, Satsu Y. Structure and magnetic properties of NdFeB powder surrounded with layer of rare-earth fluorides. J Appl Phys. 2008;103(7):07E142.CrossRefGoogle Scholar
  50. [50]
    Imaoka N, Koyama Y, Nakao T, Nakaoka S, Yamaguchi T, Kakimoto E, Tada M, Nakagawa T, Abe M. High electrical resistance composite magnets of Sm2Fe17N3 powders coated with ferrite layer for high frequency applications. J Appl Phys. 2008;103(7):07E129.CrossRefGoogle Scholar
  51. [51]
    Marinescu M, Gabay AM, Liu JF, Hadjipanayis GC. Fluoride-added Pr–Fe–B die-upset magnets with increased electrical resistivity. J Appl Phys. 2009;105(7):07A711.CrossRefGoogle Scholar
  52. [52]
    Sawatzki S, Dirba I, Schultz L, Gutfleisch O. Electrical and magnetic properties of hot-deformed Nd–Fe–B magnets with different DyF3 additions. J Appl Phys. 2013;114(13):133902.CrossRefGoogle Scholar
  53. [53]
    Zheng L, Li W, Zhu M, Ye L, Bi W. Microstructure, magnetic and electrical properties of the composite magnets of Nd–Fe–B powders coated with silica layer. J Alloys Compd. 2013;560:80.CrossRefGoogle Scholar
  54. [54]
    Gutfleisch O, Verdier M, Harris IR, Ray AE. Characterisation of rare earth-transition metal alloys with resistivity measurements. IEEE Trans Magn. 1993;29(6):2872.CrossRefGoogle Scholar
  55. [55]
    Gutfleisch O, Harris IR. In-situ electrical resistivity measurements: study of magnetic and phase transitions and solid-HDDR processes in Nd–Fe–B-type alloys. J Mater Sci. 1995;30(6):1397.CrossRefGoogle Scholar
  56. [56]
    Stankiewicz J, Bartolome J. Electron-transport properties of R2Fe14B compounds. Phys Rev B. 1997;55(5):3058.CrossRefGoogle Scholar
  57. [57]
    Sugimoto S, Gutfleisch O, Harris IR. Resistivity measurements on hydrogenation disproportionation desorption recombination phenomena in Nd–Fe–B alloys with Co, Ga and Zr additions. J Alloys Compd. 1997;260(1):284.CrossRefGoogle Scholar
  58. [58]
    Pan W, Li W, Cui LY, Li XM, Guo ZH. Rare earth magnets resisting eddy currents. IEEE Trans Magn. 1999;35(5):3343.CrossRefGoogle Scholar
  59. [59]
    Stankiewicz J, Bartolome J. Magnetotransport properties of Nd2Fe14B. Phys Rev B. 1999;59(2):1152.CrossRefGoogle Scholar
  60. [60]
    Nishimura K, Kohara Y, Kitamoto Y, Abe M. Magnetoresistance in magnetite films prepared from aqueous solution at room temperature. J Appl Phys. 2000;87(9):7127.CrossRefGoogle Scholar
  61. [61]
    Kitamoto Y, Nakayama Y, Abe M. Spin-dependent intergranular transport in magnetite films deposited by ferrite plating. J Appl Phys. 2000;87(9):7130.CrossRefGoogle Scholar
  62. [62]
    Kim D, Ohnishi M, Matsushita N, Abe M. Magnetic cores usable in gigahertz range: permalloy/Ni–Zn ferrite microcomposite made by low-temperature wet process. IEEE Trans Magn. 2003;39(5):3181.CrossRefGoogle Scholar
  63. [63]
    Kirchner A, Thomas J, Gutfleisch O, Hinz D, Muller KH, Schultz L. HRTEM studies of grain boundaries in die-upset Nd–Fe–Co–Ga–B magnets. J Alloys Compd. 2004;365(1):286.CrossRefGoogle Scholar
  64. [64]
    Tada M, Abe T, Miyasaka J, Matsushita N, Abe M. Crystallite size dependence of natural resonance frequency for spin-sprayed Fe3O4/γ–Fe2O3 films highly permeable up to gigahertz range. J Appl Phys. 2005;97(10):10G109.CrossRefGoogle Scholar
  65. [65]
    Saito T. Electrical resistivity and magnetic properties of Nd–Fe–B alloys produced by melt-spinning technique. J Alloys Compd. 2010;505(1):23.CrossRefGoogle Scholar
  66. [66]
    Gabay AM, Marinescu-Jasinski M, Chinnasamy CN, Liu JF, Hadjipanayis GC. Eddy-current-resistant SmCo5/CaF2 magnets produced via high-energy milling in polar and non-polar liquids. J Magn Magn Mater. 2012;324(18):2879.CrossRefGoogle Scholar
  67. [67]
    Kim KM, Kim JY, Kwon HW, Kim DH, Lee JG, Yu JH. High electrical resistivity Nd–Fe–B die-upset magnet doped with eutectic DyF3-LiF salt mixture. AIP Adv. 2017;7(5):056232.CrossRefGoogle Scholar
  68. [68]
    Kang MS, Kwon HW, Kim DH, Lee JG, Yu JH. Ceramics-bonded Nd–Fe–B-type magnet with high electrical resistivity. AIP Adv. 2017;8(5):056229.CrossRefGoogle Scholar
  69. [69]
    Kang MS, Kim KM, Kwon HW, Kim DH, Lee JG, Shin KH. Electrical resistivity and magnetic performance of ceramics-bonded Nd–Fe–B-type magnet consolidated using dielectric oxide binder. IEEE Trans Magn. 2019;55(7):2101405.CrossRefGoogle Scholar
  70. [70]
    Fedorov P. Systems of Alkali and rare-earth metal fluorides. Russ J Inorg Chem. 1999;44(11):1703.Google Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringPukyong National UniversityBusanRepublic of Korea

Personalised recommendations