Rare Metals

pp 1–11 | Cite as

Improving anode performances of lithium-ion capacitors employing carbon–Si composites

  • Ya-Bin An
  • Si Chen
  • Min-Min Zou
  • Lin-Bin Geng
  • Xian-Zhong Sun
  • Xiong Zhang
  • Kai Wang
  • Yan-Wei MaEmail author


The lithium-ion capacitor is a promising energy storage system with a higher energy density than traditional supercapacitors. However, its cycling and rate performances, which depend on the electrochemical properties of the anode, are still required to be improved. In this work, soft carbon anodes reinforced using carbon–Si composites of various compositions were fabricated to investigate their beneficial influences on the performance of lithium-ion capacitors. The results showed that the specific capacities of the anodes increased significantly by 16.6 mAh·g−1 with 1.0 wt% carbon–Si composite, while the initial discharge efficiency barely changed. The specific capacity of the anode with a 10.0 wt% carbon–Si composite reached 513.1 mAh·g−1, and the initial discharge efficiency was 83.79%. Furthermore, the anodes with 7.5 wt% or lower amounts of carbon–Si composite demonstrated reduced charge transfer resistances, which caused an improvement in the rate performance of the lithium-ion capacitors. Moreover, the use of the optimized amount (7.5 wt%) of carbon–Si composite in the anode could significantly improve the cycling performance of the lithium-ion capacitor by compensating the consumption of active lithium. The capacity retention of the lithium-ion capacitor reached 95.14% at 20 C after 10,000 cycles, while the anode potential remained below 0.412 V, which is much lower than that of a soft carbon anode.


Lithium-ion capacitor Soft carbon Carbon–Si composite Cycling performance Rate performance 



This work was financially supported by the National Natural Science Foundation of China (No. 51721005) and the Beijing Municipal Science and Technology Commission (No. Z171100000917007).


  1. [1]
    Aricò AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4:366.CrossRefGoogle Scholar
  2. [2]
    Mushtaq M, Guo XW, Bi JP, Wang ZX, Yu HJ. Polymer electrolyte with composite cathode for solid-state Li–CO2 battery. Rare Met. 2018;37(6):520.CrossRefGoogle Scholar
  3. [3]
    Zhao N, Fang R, He MH, Chen C, Li YQ, Bi ZJ, Guo XX. Cycle stability of lithium/garnet/lithium cells with different intermediate layers. Rare Met. 2018;37(6):520.CrossRefGoogle Scholar
  4. [4]
    Gu H, Zhu YE, Yang J, Wei J, Zhou Z. Nanomaterials and technologies for lithium-ion hybrid supercapacitors. ChemNanoMat. 2016;2(7):578.CrossRefGoogle Scholar
  5. [5]
    Han P, Xu G, Han X, Zhao J, Zhou X, Cui G. Lithium ion capacitors in organic electrolyte system: scientific problems, material development, and key technologies. Adv Energy Mater. 2018;8(26):1801243.CrossRefGoogle Scholar
  6. [6]
    Li B, Zheng J, Zhang H, Jin L, Yang D, Lv H, Shen C, Shellikeri A, Zheng Y, Gong R, Zheng JP, Zhang C. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv Mater. 2018;30(17):e1705670.CrossRefGoogle Scholar
  7. [7]
    Cao WJ, Luo JF, Yan J, Chen XJ, Brandt W, Warfield M, Lewis D, Yturriaga SR, Moye DG, Zheng JP. High performance li-ion capacitor laminate cells based on hard carbon/lithium stripes negative electrodes. J Electrochem Soc. 2016;164(2):A93.CrossRefGoogle Scholar
  8. [8]
    Cao WJ, Zheng JP. Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes. J Power Sour. 2012;213:180.CrossRefGoogle Scholar
  9. [9]
    Sun X, Zhang X, Zhang H, Xu N, Wang K, Ma Y. High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes. J Power Sour. 2014;270:318.CrossRefGoogle Scholar
  10. [10]
    Zhang J, Liu X, Wang J, Shi J, Shi Z. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors. Electrochim Acta. 2016;187:134.CrossRefGoogle Scholar
  11. [11]
    Jin L, Zheng J, Wu Q, Shellikeri A, Yturriaga S, Gong R, Huang J, Zheng JP. Exploiting a hybrid lithium ion power source with a high energy density over 30 Wh/kg. Mater Today Energy. 2018;7:51.CrossRefGoogle Scholar
  12. [12]
    Schroeder M, Winter M, Passerini S, Balducci A. On the cycling stability of lithium-ion capacitors containing soft carbon as anodic material. J Power Sour. 2013;238:388.CrossRefGoogle Scholar
  13. [13]
    Zhang J, Shi Z, Wang C. Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitors. Electrochim Acta. 2014;125:22.CrossRefGoogle Scholar
  14. [14]
    Decaux C, Lota G, Raymundo-Piñero E, Frackowiak E, Béguin F. Electrochemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis(trifluoromethane) sulfonimide-based electrolyte. Electrochim Acta. 2012;86:282.CrossRefGoogle Scholar
  15. [15]
    Kumagai S, Ishikawa T, Sawa N. Cycle performance of lithium-ion capacitors using graphite negative electrodes at different pre-lithiation levels. J Energy Storage. 2015;2:1.CrossRefGoogle Scholar
  16. [16]
    Lim YG, Park JW, Park MS, Byun D, Yu JS, Jo YN, Kim YJ. Hard carbon-coated natural graphite electrodes for high-energy and power lithium-ion capacitors. Bull Korean Chem Soc. 2015;36(1):150.CrossRefGoogle Scholar
  17. [17]
    Sivakkumar SR, Nerkar JY, Pandolfo AG. Rate capability of graphite materials as negative electrodes in lithium-ion capacitors. Electrochim Acta. 2010;55(9):3330.CrossRefGoogle Scholar
  18. [18]
    Yuan M, Liu W, Zhu Y, Xu Y. Electrochemical performance of pre-lithiated graphite as negative electrode in lithium-ion capacitors. Rus J Electrochem. 2014;50(11):1050.CrossRefGoogle Scholar
  19. [19]
    Li C, Zhang X, Sun C, Wang K, Sun X, Ma Y. Recent progress of graphene-based materials in lithium-ion capacitors. J Phys D Appl Phys. 2019;52(14):143001.CrossRefGoogle Scholar
  20. [20]
    Phattharasupakun N, Wutthiprom J, Suktha P, Ma N, Sawangphruk M. Enhancing the charge storage capacity of lithium-ion capacitors using nitrogen-doped reduced graphene oxide aerogel as a negative electrode: a hydrodynamic rotating disk electrode investigation. J Electrochem Soc. 2018;165(3):A609.CrossRefGoogle Scholar
  21. [21]
    Ren JJ, Su LW, Qin X, Yang M, Wei JP, Zhou Z, Shen P. Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density. J Power Sour. 2014;264:108.CrossRefGoogle Scholar
  22. [22]
    Sun Y, Tang J, Qin F, Yuan J, Zhang K, Li J, Zhu D, Qin L. Hybrid lithium-ion capacitors with asymmetric graphene electrodes. J Mater Chem A. 2017;5(26):13601.CrossRefGoogle Scholar
  23. [23]
    Xu N, Sun X, Zhao F, Jin X, Zhang X, Wang K, Huang K, Ma Y. The role of pre-lithiation in activated carbon/Li4Ti5O12 asymmetric capacitors. Electrochim Acta. 2017;236:443.CrossRefGoogle Scholar
  24. [24]
    Dong S, Wang X, Shen L, Li H, Wang J, Nie P, Wang J, Zhang X. Trivalent Ti self-doped Li4Ti5O12: a high performance anode material for lithium-ion capacitors. J Electroanal Chem. 2015;757:1.CrossRefGoogle Scholar
  25. [25]
    Zhang S, Li C, Zhang X, Sun X, Wang K, Ma Y. High performance lithium-ion hybrid capacitors employing Fe3O4-graphene composite anode and activated carbon cathode. ACS Appl Mater Interfaces. 2017;9(20):17136.CrossRefGoogle Scholar
  26. [26]
    Han C, Xu L, Li H, Shi R, Zhang T, Li J, Wong C, Kang F, Lin Z, Li B. Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon. 2018;140:296.CrossRefGoogle Scholar
  27. [27]
    Yu P, Cao G, Yi S, Zhang X, Li C, Sun X, Wang K, Ma Y. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale. 2018;10(13):5906.CrossRefGoogle Scholar
  28. [28]
    Byeon A, Glushenkov AM, Anasori B, Urbankowski P, Li J, Byles BW, Blake B, Van KL, Kota S, Pomerantseva E, Lee JW, Chen Y, Gogotsi Y. Lithium-ion capacitors with 2D Nb2CTx (MXene)—carbon nanotube electrodes. J Power Sour. 2016;326:686.CrossRefGoogle Scholar
  29. [29]
    Zhao X, Wang HE, Cao J, Cai W, Sui J. Amorphous/crystalline hybrid MoO2 nanosheets for high-energy lithium-ion capacitors. Chem Commun (Camb). 2017;53(77):10723.CrossRefGoogle Scholar
  30. [30]
    Han P, Ma W, Pang S, Kong Q, Yao J, Bi C, Cui G. Graphene decorated with molybdenum dioxide nanoparticles for use in high energy lithium ion capacitors with an organic electrolyte. J Mater Chem A. 2013;1(19):5949.CrossRefGoogle Scholar
  31. [31]
    Cai M, Sun X, Nie Y, Chen W, Qiu Z, Chen L, Liu Z, Tang H. Electrochemical performance of lithium-ion capacitors using pre-lithiated multiwalled carbon nanotubes as anode. NANO. 2017;12(04):1750051.CrossRefGoogle Scholar
  32. [32]
    Xia Q, Yang H, Wang M, Yang M, Guo Q, Wan L, Xia H, Yu Y. High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode. Adv Energy Mater. 2017;7(22):1701336.CrossRefGoogle Scholar
  33. [33]
    Qu D, You X, Feng X, Wu J, Liu D, Zheng D, Xie Z, Qu D, Li J, Tang H. Lithium ion supercapacitor composed by Si-based anode and hierarchal porous carbon cathode with super long cycle life. Appl Surf Sci. 2019;463:879.CrossRefGoogle Scholar
  34. [34]
    Li B, Li S, Jin Y, Zai J, Chen M, Nazakat A, Zhan P, Huang Y, Qian X. Porous Si@C ball-in-ball hollow spheres for lithium-ion capacitors with improved energy and power densities. J Mater Chem A. 2018;6(42):21098.CrossRefGoogle Scholar
  35. [35]
    Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199.CrossRefGoogle Scholar
  36. [36]
    Kim JH, Kim JS, Lim YG, Lee JG, Kim YJ. Effect of carbon types on the electrochemical properties of negative electrodes for Li-ion capacitors. J Power Sour. 2011;196(23):10490.CrossRefGoogle Scholar
  37. [37]
    Cao W, Zheng J, Adams D, Doung T, Zheng JP. Comparative study of the power and cycling performance for advanced lithium-ion capacitors with various carbon anodes. J Electrochem Soc. 2014;161(14):A2087.CrossRefGoogle Scholar
  38. [38]
    Obrovac M, Christensen L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid State Lett. 2004;7(5):A93.CrossRefGoogle Scholar
  39. [39]
    Sun X, Zhang X, Liu W, Wang K, Li C, Li Z, Ma Y. Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor. Electrochim Acta. 2017;235:158.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Electrical EngineeringChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.College of Materials Science and EngineeringBeijing Institute of Petrochemical TechnologyBeijingChina

Personalised recommendations