Rare Metals

pp 1–8 | Cite as

An explicit and novel structure, lattice dynamics, and photoemission of La-doped nanocrystalline SrZrO3 perovskite

  • Kamilia Sedeek
  • Nahed Makram
  • Hanan Hantour
  • Taghreed Zaghloul Amer
  • Shimaa Ali SaidEmail author


As no complete and comprehensive studies have been previously reported for La-doped nanocrystalline SrZrO3 (SZO), we researched herein a detailed investigation for pure and La-doped samples. A modified solid-state reaction process, including successive cycles of milling and sintering at high temperature, was followed to produce SZO and Sr0.9La0.1ZrO3 (SLZO) powdered ingots. Rietveld analysis of X-ray diffractometer data predicts that the two samples exhibit orthorhombic structure with an increase in crystallite size by ~25% for doped sample. A great reduction in Raman modes intensity (~60%) and an annihilation of several vibration modes were detected using Raman spectroscopy. The degree of ordering on the B-site was recorded to be higher in La-doped sample. According to ultraviolet–visible (UV–Vis) absorption, a decrease in the optical gap width (Eg) from 4.40 eV to 4.21 eV was achieved by La incorporation due to the presence of additional defect states such as oxygen and Sr vacancies at the band edge. The process of electron–hole recombination was studied using photoluminescence (PL) spectroscopy. Deconvolution of PL spectra yielded four emission bands: one green band, one blue band, and two violet bands. Highly intense violet emission at λ = 393 nm approximately five times greater than that detected for pure SZO is realized as La3+ substitutes for Sr2+. Such property nominates SLZO for technological applications requiring highly intense violet emission, e.g., light-emitting diodes.


Orthorhombic perovskite structure Lattice dynamics Diffused reflectance Photoluminescence Highly intense violet emission 



The authors are grateful to the Grants Commission of Al-Azhar University, Cairo, Egypt for supporting this work. The authors are Thankful to Nanotechnology Characterization Center (NCC)-Cairo University and Central Metallurgical Research Institute (CMRDI)-El Tebeen for extending the XRD and UV–Vis diffused reflectance facility.


  1. [1]
    Ahtee A, Ahtee M, Glazer AM, Hewat AW. The structure of orthorhombic SrZrO3 by neutron powder diffraction. Acta Crystallogr B. 1976;32:3243.CrossRefGoogle Scholar
  2. [2]
    Ali Z, Atta A, Abbas Y, Sedeek K, Adam A, Abdeltawab E. Multiferroic BiFeO3 thin films: structural and magnetic characterization. Thin Solid Films. 2015;577:124.CrossRefGoogle Scholar
  3. [3]
    Fabbri E, Pergolesi D, Traversa E. Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem Soc Rev. 2010;39(11):4355.CrossRefGoogle Scholar
  4. [4]
    Malavasi L, Fisher CAJ, Islam MS. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev. 2010;39(11):4370.CrossRefGoogle Scholar
  5. [5]
    Duan Y, Ohodnicki P, Chorpening B, Hackett G. Electronic structural, optical and phonon lattice dynamical properties of pure- and La-doped SrTiO3: an ab initio thermodynamics study. Solid State Chem. 2017;256:239.CrossRefGoogle Scholar
  6. [6]
    Duan Y, Ohodnicki P, Chorpening B, Abernathy HW, Hakett G. Theoretical investigation of the electronic, structural, optical and thermodynamic properties of LaxSr1–xTiO3 (x = 0, 0.125, 0.25). ECS Trans. 2017;78(1):2865.CrossRefGoogle Scholar
  7. [7]
    Schultz AM, Brown TD, Buric MP, Lee SW, Gerdes K, Ohodnicki PR. High temperature fiber-optic evanescent wave hydrogen sensors using La-doped SrTiO3 for SOFC applications. Sens Acuators B Chem. 2015;221:1307.CrossRefGoogle Scholar
  8. [8]
    Schultz AM, Brown TD, Ohodnicki PR. Optical and cheme-resistive sensing in extreme environments: La-doped SrTiO3 films for hydrogen sensing at high temperatures. J Phys Chem C. 2015;119(11):6211.CrossRefGoogle Scholar
  9. [9]
    Wei W, Dai Y, Guo M, Yu L, Huang B. Density functional characterization of the electronic structure and optical properties of N-doped, La-doped, and N/La-codoped SrTiO3. J Phys Chem C. 2009;113(33):15046.CrossRefGoogle Scholar
  10. [10]
    Zhou X, Yan N, Chuang KT, Lou J. Progress in La-doped SrTiO3 (LST)-based anode materials for solid oxide fuel cells. RSC Adv. 2014;4(1):118.CrossRefGoogle Scholar
  11. [11]
    Choi M, Posadas AB, Rodriguez CA, O’Hara A, Seinige H, Kellock AJ, Frank MM, Tsoi M, Zollner S, Narayanan V, Demkov AA. Structural, optical and electrical properties of strained La-doped SrTiO3 films. J Appl Phys. 2014;116:043705.CrossRefGoogle Scholar
  12. [12]
    Suriyayothin N, Error NG. Effect of La additions on the electrical conductivity of SrZrO3. In: The 86th annual meeting of the American Ceramic Society, Pittsburgh (Pennsylvania). 1984. 1.Google Scholar
  13. [13]
    Suriyayothin N, Padmanabhan R. Transmission electron microscopy investigations of second phases in the system (La, Sr)ZrO3. Mater Sci Eng. 1987;95:295.CrossRefGoogle Scholar
  14. [14]
    Sedeek K, Said ShA, Hantour H, Makram N, Amer TZ. Innovative synthesis and properties of Fe doped nanocrystalline strontium zirconate for the development of visible light driven photocatalyst. Results Phys. 2019;12:1038.CrossRefGoogle Scholar
  15. [15]
    Sedeek K, Said SA, Amer TZ, Makram N, Hantour H. Band gap tuning in nanocrystalline SrTi0.9Fe0.1O2.968 perovskite type for photocatalytic and photovoltaic applications. Ceram Int. 2019;45(1):1202.CrossRefGoogle Scholar
  16. [16]
    Ahmad T, Ganguli AK. Synthesis, characterization and dielectric properties of nanocrystalline strontium zirconate prepared through a modified reverse miceller route. Mater Lett. 2006;60(29–30):3660.CrossRefGoogle Scholar
  17. [17]
    Verma AS, Kumar A, Bhardwaj SR. Correlation between ionic charge and the lattice constant of cubic perovskite solids. Phys Status Solidi (B). 2008;245(8):1520.CrossRefGoogle Scholar
  18. [18]
    Shannon RD, Prewitt CT. Effective ionic radii in oxides and fluorides. Acta Cryst. 1969;B25:925.CrossRefGoogle Scholar
  19. [19]
    Howard CJ, Knight KS, Kennedy BJ, Kisi EH. The structural phase transitions in strontium zirconate. J Phys Condens Matter. 2000;12(45):L677.CrossRefGoogle Scholar
  20. [20]
    Suriyayothin N, Eror NG. Solubility limit of La in SrZrO3. J Mater Sci. 1984;19(9):2775.CrossRefGoogle Scholar
  21. [21]
    Cavalcante LS, Simões AZ, Sczancoski JC, Longo VM, Erlo R, Escote MT, Longo E, Varela JA. SrZrO3 powders obtained by chemical method: synthesis, characterization and optical absorption behaviour. Solid State Sci. 2007;9(11):1020.CrossRefGoogle Scholar
  22. [22]
    Amisi S, Bousquet E, Katcho K, Ghosez P. First-principles study of structural and vibrational properties of SrZrO3. Phys Rev B. 2012;85:064112.CrossRefGoogle Scholar
  23. [23]
    Kamishima O, Hattori T, Ohta K, Chiba Y, Ishigame M. Raman scattering of single-crystal SrZrO3. J Phys Condens Matter. 1999;11(27):5355.CrossRefGoogle Scholar
  24. [24]
    Kumar A, Kumari S, Borkar H, Katiyar RS, Scott JF. Experimental verification of the ab initio phase transition sequence in SrZrO3 and comparisons with SrHfO3 and SrSnO3. NPJ Comput Mater. 2017;3(2):1.Google Scholar
  25. [25]
    Tarrida M, Larguem H, Madon M. Structural investigations of (Ca, Sr)ZrO3 and Ca(Sn, Zr)O3 perovskite compounds. Phys Chem Miner. 2009;36(7):403.CrossRefGoogle Scholar
  26. [26]
    Dopal PS, Dixit A, Katiyar RS. Effect of lanthanum substitution on the Raman spectra of barium titanate thin films. J Raman Spectrosc. 2007;38(2):142.CrossRefGoogle Scholar
  27. [27]
    Zheng H, de Gyorgyfalva GDCC, Quimby R, Bagshaw H, Ubic R, Reaney IM, Yarwood J. Raman spectroscopy of B-site order–disorder CaTiO3-based microwave ceramics. J Eur Ceram Soc. 2003;23(14):2653.CrossRefGoogle Scholar
  28. [28]
    Rashad MM, Mostafa AG, Rayan DA. Structural and optical properties of nanocrystalline mayenite Ca12Al14O33 powders synthesized using a novel route. J Mater Sci Mater Electron. 2016;27(3):2614.CrossRefGoogle Scholar
  29. [29]
    Kubelka P, Munk F. The Kubelka–Munk theory of reflectance. Ein Beitrag zur Optik der Farbanstriche Z Technol Phys. 1931;12:593.Google Scholar
  30. [30]
    Barrón V, Torrent J. Use of the Kubelka—Munk theory to study the influence of iron oxides on soil colour. J Soil Sci. 1986;37(4):499.CrossRefGoogle Scholar
  31. [31]
    Yun JN, Zhang ZY, Yan JF, Zhoa W. First principle study of structural stability and electronic structure of La-doped Sr1.9375La0.0625TiO3.965. J Appl Phys. 2010;107:103711.CrossRefGoogle Scholar
  32. [32]
    Palik ED. Handbook of optical constants of solid II. Boston: Academic Press; 1991. 187.Google Scholar
  33. [33]
    Lee D, Lee Y. Correlation between optical and structural properties in SrZrO3 nanocrystals. New Phys Sae Mulli. 2012;62:1137.CrossRefGoogle Scholar
  34. [34]
    Flores AMH, Martínez LMT, Moctezuma E, Sánchez OC. Enhanced photocatalytic activity for hydrogen evolution of SrZrO3 modified with earth abundant metal oxides (MO, M = Cu, Ni, Fe, Co). Fuel. 2016;181:670.CrossRefGoogle Scholar
  35. [35]
    Vanheusden K, Warren WL, Seager CH, Tallent DR, Voigt JA, Gnade BE. Mechanisms behind green photoluminescence in ZnO phosphor powders. J Appl Phys. 1996;79(10):7983.CrossRefGoogle Scholar
  36. [36]
    Longo VM, Cavalcante LS, Erlo R, Mastelaro VR, de Figueiredo AT, Sambrano JR, de Làzaro S, Freitas AZ, Gomes L Jr, Vieira ND, Varela JA, Longo E. Strong violet–blue light photoluminescence emission at room temperature in SrZrO3: joint experimental and theoretical study. Acta Mater. 2008;56(10):2191.CrossRefGoogle Scholar
  37. [37]
    Zhang A, Lü M, Wang Sh, Zhou G, Zhou Y. Novel photoluminescence of SrZrO3 nanocrystals synthesized through a facile combustion method. J Alloys Compd. 2007;433(1–2):L7.CrossRefGoogle Scholar
  38. [38]
    Lee DJ, Kim DH, Park JW, Lee YS. Room-temperature violet-blue emission for SrZrO3 nanocrystals synthesized by using the combustion method. J Korean Phys Soc. 2011;59:2797.CrossRefGoogle Scholar
  39. [39]
    Pathak N, Gupta SK, Ghosh PS, Arya A, Natarajan V, Kadam RM. Probing local site environments and distribution of manganese in SrZrO3:Mn; PL and EPR spectroscopy complimented by DFT calculations. RSC Adv. 2015;5(23):17501.CrossRefGoogle Scholar
  40. [40]
    Gupta SK, Ghosh PS, Pathak N, Arya A, Natarajan V. Understanding the local environment of Sm3+ in doped SrZrO3 and energy transfer mechanism using time-resolved luminescence: a combined theoretical and experimental approach. RSC Adv. 2014;4(55):29202.CrossRefGoogle Scholar
  41. [41]
    Huang J, Zhou L, Wang Z, Lan Y, Tong Z, Gong F, Sun J, Li L. Photoluminescence properties of SrZrO3: Eu3+ and BaZrO3: Eu3+ phosphors with perovskite structure. J Alloys Compd. 2009;487(1–2):L5.CrossRefGoogle Scholar
  42. [42]
    Longo VM, Cavalcante LS, Costa MGS, Moreira ML, Figueiredo AT, Andrés J, Varela JA, Longo E. First principles calculations on the origin of violet-blue and green light photoluminescence emission in SrZrO3 and SrTiO3 perovskites. Theor Chem Acc. 2009;124:385.CrossRefGoogle Scholar
  43. [43]
    Davies RA, Islam MS, Gale JD. Dopant and proton incorporation in perovskite-type zirconates. Solid State Ion. 1999;126(3–4):323.CrossRefGoogle Scholar
  44. [44]
    Minervini L, Grimes RW. Disorder in pyrochlore oxides. J Am Ceram Soc. 2000;83(8):1873.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nano-Materials Laboratory, Physics Department, Faculty of ScienceAl-Azhar UniversityNasr City, CairoEgypt
  2. 2.Physics Department, Faculty of ScienceAl-Azhar UniversityNasr City, CairoEgypt

Personalised recommendations