Advertisement

Rare Metals

pp 1–8 | Cite as

Boron nitride/agarose hydrogel composites with high thermal conductivities

  • Ali Yazdan
  • Ji-Zhe Wang
  • Bing-Kun Hu
  • Wen-Sheng Xie
  • Ling-Yun Zhao
  • Ce-Wen Nan
  • Liang-Liang LiEmail author
Article
  • 57 Downloads

Abstract

Hydrogels are cross-linked polymers suitable for various applications, but the thermal conductivities of hydrogel-based composites have not been thoroughly investigated. In this study, agarose hydrogel-based composites with various boron nitride (BN) fillers were synthesized and their thermal conductivities were systematically investigated. With the increase in the agarose content from 1.5 wt% to 3.0 wt%, the thermal conductivity of the composite decreased. The composites with BN micropowder had larger thermal conductivities than those of the composites with BN nanopowder at the same filler loading, as the BN micropowder provided better thermal conduction pathways in the hydrogel matrix than those provided by the nanopowder. The maximum thermal conductivity of 2.69 W·m−1·K−1 was achieved when 15 wt% microscale BN fillers were added into 1.5 wt% agarose hydrogel, which was 3.5 times larger than that of the pure agarose hydrogel. Additionally, a theoretical model was used to calculate the thermal conductivities of the BN/agarose hydrogel composites; a good agreement was achieved between the experimental and fitting ones. This study demonstrated that the thermal conductivities of hydrogel-based materials can be efficiently and significantly enhanced using BN fillers.

Graphic Abstract

Keywords

Hydrogel Boron nitride Thermal conductivity Composite 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51572149), Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, Opening Project of Engineering Research Center of Nano-Geo Materials of Ministry of Education of China University of Geosciences (No. NGM2018KF010), the National Key Research and Development Program of China (No. 2016YFA0201003) and the Fund of Key Laboratory of Advanced Materials of Ministry of Education (No. 2017AML11). We thank Jabran Ahmad in School of Environment at Tsinghua University for providing us Milli-Q Ultrapure Water and Yajie Huang in School of Materials Science and Engineering at Tsinghua University for the help on AFM.

References

  1. [1]
    Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P. Interfacial heat flow in carbon nanotube suspensions. Nat Mater. 2003;2(11):731.CrossRefGoogle Scholar
  2. [2]
    Yang X, Liang C, Ma T, Guo Y, Kong J, Gu J, Chen M, Zhu J. A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv Compos Hybrid Mater. 2018;1(2):207.CrossRefGoogle Scholar
  3. [3]
    Qureshi ZA, Ali HM, Khushnood S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. Int J Heat Mass Transfer. 2018;127(C):838.CrossRefGoogle Scholar
  4. [4]
    McNamara AJ, Joshi Y, Zhang ZM. Characterization of nanostructured thermal interface materials—a review. Int J Therm Sci. 2012;62:2.CrossRefGoogle Scholar
  5. [5]
    Zhao R, Zhang S, Liu J, Gu J. A review of thermal performance improving methods of lithium ion battery: electrode modification and thermal management system. J Power Sources. 2015;299:557.CrossRefGoogle Scholar
  6. [6]
    Prasher R. Thermal interface materials: historical perspective, status, and future directions. Proc IEEE. 2006;94(8):1571.CrossRefGoogle Scholar
  7. [7]
    Zhang R, Cai J, Wang Q, Li J, Hu Y, Du H, Li L. Thermal resistance analysis of Sn-Bi solder paste used as thermal interface material for power electronics applications. J Electron Packag. 2014;136(1):011012.CrossRefGoogle Scholar
  8. [8]
    Guo Y, Xu G, Yang X, Ruan K, Ma T, Zhang Q, Gu J, Wu Y, Liu H, Guo Z. Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene: via in situ polymerization and electrospinning-hot press technology. J Mater Chem C. 2018;6(12):3004.CrossRefGoogle Scholar
  9. [9]
    Hwang SH, Shahsavari R. Intrinsic size effect in scaffolded porous calcium silicate particles and mechanical behavior of their self-assembled ensembles. ACS Appl Mater Interfaces. 2017;10(1):890.CrossRefGoogle Scholar
  10. [10]
    Hansson J, Nilsson TMJ, Ye L, Liu J. Novel nanostructured thermal interface materials: a review. Int Mater Rev. 2018;63(1):22.CrossRefGoogle Scholar
  11. [11]
    Yang F, Zhao X, Xiao P. Thermal conductivities of YSZ/Al2O3 composites. J Eur Ceram Soc. 2010;30(15):3111.CrossRefGoogle Scholar
  12. [12]
    Guo B, Lin Q, Zhao X, Zhou X. Crystallization of polyphenylene sulfide reinforced with aluminum nitride composite: effects on thermal and mechanical properties of the composite. Iran Polym J. 2015;24(11):965.CrossRefGoogle Scholar
  13. [13]
    Kim KJ, Cho TY, Kim YW, Nishimura T, Narimatsu E. Electrical and thermal properties of silicon carbide-boron nitride composites prepared without sintering additives. J Eur Ceram Soc. 2015;35(16):4423.CrossRefGoogle Scholar
  14. [14]
    Gu J, Xu S, Zhuang Q, Tang Y, Kong J. Hyperbranched polyborosilazane and boron nitride modified cyanate ester composite with low dielectric loss and desirable thermal conductivity. IEEE Trans Dielectr Electr Insul. 2017;24(2):784.CrossRefGoogle Scholar
  15. [15]
    Jeong US, Lee YJ, Shin DG, Lim HM, Mun SY, Kwon WT, Kim SR, Kim YH, Shim KB. Highly thermal conductive alumina plate/epoxy composite for electronic packaging. Trans Electr Electron Mater. 2015;16(6):351.CrossRefGoogle Scholar
  16. [16]
    Yang H, Gao Q, Xie Y, Chen Q, Ouyang C, Xu Y, Ji X. Effect of SiO2 and TiO2 nanoparticle on the properties of phenyl silicone rubber. J Appl Polym Sci. 2015;132(46):42806.CrossRefGoogle Scholar
  17. [17]
    Wertz JT, Kuczynski JP, Boday DJ. Thermally conductive-silicone composites with thermally reversible cross-links. ACS Appl Mater Interfaces. 2016;8(22):13669.CrossRefGoogle Scholar
  18. [18]
    Kamthai S, Magaraphan R. Thermal and mechanical properties of polylactic acid (PLA) and bagasse carboxymethyl cellulose (CMCB) composite by adding isosorbide diesters. AIP Conf Proc. 2015;1664(1):060006.CrossRefGoogle Scholar
  19. [19]
    Zhou T, Wang X, Cheng P, Wang T, Xiong D, Wang X. Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles. Express Polym Lett. 2013;7(7):585.CrossRefGoogle Scholar
  20. [20]
    Pakdel A, Zhi C, Bando Y, Nakayama T, Golberg D. Boron nitride nanosheet coatings with controllable water repellency. ACS Nano. 2011;5(8):6507.CrossRefGoogle Scholar
  21. [21]
    Gao C, Feng C, Lu H, Ni H, Chen J. Thermally conductive general-purpose polystyrene (GPPS)/graphite composite with a segregated structure: effect of size of resin and graphite flakes. Polym Plast Technol Eng. 2018;57(13):1277.CrossRefGoogle Scholar
  22. [22]
    Sun H, Chen D, Wu Y, Yuan Q, Guo L, Dai D, Xu Y, Zhao P, Jiang N, Lin CT. High quality graphene films with a clean surface prepared by an UV/ozone assisted transfer process. J Mater Chem C. 2017;5(8):1880.CrossRefGoogle Scholar
  23. [23]
    Ji T, Zhang LQ, Wang WC, Liu Y, Zhang XF, Lu YL. Cold plasma modification of boron nitride fillers and its effect on the thermal conductivity of silicone rubber/boron nitride composites. Polym Compos. 2012;33(9):1473.CrossRefGoogle Scholar
  24. [24]
    Tang C, Bando Y, Liu C, Fan S, Zhang J, Ding X, Golberg D. Thermal conductivity of nanostructured boron nitride materials. J Phys Chem B. 2006;110(21):10354.CrossRefGoogle Scholar
  25. [25]
    Yang X, Guo Y, Luo X, Zheng N, Ma T, Tan J, Li C, Zhang Q, Gu J. Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in situ polymerization. Compos Sci Technol. 2018;164:59.CrossRefGoogle Scholar
  26. [26]
    Gu J, Lv Z, Wu Y, Guo Y, Tian L, Qiu H, Li W, Zhang Q. Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in situ polymertization-electrospining-hot press method. Compos Part A Appl Sci Manuf. 2017;94:209.CrossRefGoogle Scholar
  27. [27]
    Nojoomi A, Arslan H, Lee K, Yum K. Bioinspired 3D structures with programmable morphologies and motions. Nat Commun. 2018;9(1):3705.CrossRefGoogle Scholar
  28. [28]
    Griffin DR, Weaver WM, Scumpia PO, Carlo DD, Segura T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat Mater. 2015;14(7):737.CrossRefGoogle Scholar
  29. [29]
    Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1(12):16071.CrossRefGoogle Scholar
  30. [30]
    Fern J, Schulman R. Modular DNA strand-displacement controllers for directing material expansion. Nat Commun. 2018;9(1):3766.CrossRefGoogle Scholar
  31. [31]
    Stoddart A. Hydrogels: a less than swell time. Nat Rev Mater. 2017;2(4):17018.CrossRefGoogle Scholar
  32. [32]
    Jiang H, Wang Z, Geng H, Song X, Zeng H, Zhi C. Highly flexible and self-healable thermal interface material based on boron nitride nanosheets and a dual cross-linked hydrogel. ACS Appl Mater Interfaces. 2017;9(11):10078.CrossRefGoogle Scholar
  33. [33]
    Burnett K, Edsinger E, Albrecht DR. Rapid and gentle hydrogel encapsulation of living organisms enables long-term microscopy over multiple hours. Commun Biol. 2018;1(1):73.CrossRefGoogle Scholar
  34. [34]
    Zarrintaj P, Bakhshandeh B, Rezaeian I, Heshmatian B, Ganjali MR. A novel electroactive agarose-aniline pentamer platform as a potential candidate for neural tissue engineering. Sci Rep. 2017;7(1):17187.CrossRefGoogle Scholar
  35. [35]
    Lee PY, Costumbrado J, Hsu CY, Kim YH. Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp. 2012;62:e3923.Google Scholar
  36. [36]
    Geick R, Perry CH, Rupprecht G. Normal modes in hexagonal boron nitride. Phys Rev. 1966;146(2):543.CrossRefGoogle Scholar
  37. [37]
    Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010;10(8):3209.CrossRefGoogle Scholar
  38. [38]
    Kuzuba T, Sato Y, Yamaoka S, Era K. Raman-scattering study of high-pressure effects on the anisotropy of force constants of hexagonal boron nitride. Phys Rev B. 1978;18(8):4440.CrossRefGoogle Scholar
  39. [39]
    Hrozek J, Nespor D, Bartusek K. Thermal conductivity and heat capacity measurement of biological tissues. In: Proceedings of the 34th Progress in Electromagnetics Research Symposium. Stockholm; 2013. 1681.Google Scholar
  40. [40]
    Zhang M, Che Z, Chen J, Zhao H, Yang L, Zhong Z, Lu J. Experimental determination of thermal conductivity of water-agar gel at different concentrations and temperatures. J Chem Eng Data. 2011;56(4):859.CrossRefGoogle Scholar
  41. [41]
    Zhou W, Qi S, An Q, Zhao H, Liu N. Thermal conductivity of boron nitride reinforced polyethylene composites. Mater Res Bull. 2007;42(10):1863.CrossRefGoogle Scholar
  42. [42]
    Zhang S, Cao XY, Ma YM, Ke YC, Zhang JK, Wang FS. The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites. Express Polym Lett. 2011;5(7):581.CrossRefGoogle Scholar
  43. [43]
    Zeng X, Xiong Y, Fu Q, Sun R, Xu J, Xu D, Wong CP. Structure-induced variation of thermal conductivity in epoxy resin fibers. Nanoscale. 2017;9(30):10585.CrossRefGoogle Scholar
  44. [44]
    Yu J, Huang X, Wu C, Wu X, Wang G, Jiang P. Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer. 2012;53(2):471.CrossRefGoogle Scholar
  45. [45]
    Tessema A, Zhao D, Moll J, Xu S, Yang R, Li C, Kumar SK, Kidane A. Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites. Polym Test. 2017;57:101.CrossRefGoogle Scholar
  46. [46]
    Fang H, Zhang X, Zhao Y, Bai SL. Dense graphene foam and hexagonal boron nitride filled PDMS composites with high thermal conductivity and breakdown strength. Compos Sci Technol. 2017;152:243.CrossRefGoogle Scholar
  47. [47]
    Nielsen LE. The thermal and electrical conductivity of two-phase systems. Ind Eng Chem Fundam. 1974;13(1):17.CrossRefGoogle Scholar
  48. [48]
    Wong CP, Bollampally RS. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J Appl Polym Sci. 1999;74(14):3396.CrossRefGoogle Scholar
  49. [49]
    Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1(3):187.CrossRefGoogle Scholar
  50. [50]
    Li Y, Xu G, Guo Y, Ma T, Zhong X, Zhang Q, Gu J. Fabrication, proposed model and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers. Compos Part A. 2018;107:570.CrossRefGoogle Scholar
  51. [51]
    Fricke H. A mathematical treatment of the electric conductivity and capacity of disperse systems. Phys Rev. 1924;24(5):575.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.Engineering Research Center of Nano-Geo Materials of Ministry of EducationChina University of GeosciencesWuhanChina

Personalised recommendations