Advertisement

Neutron diffraction studies of permanent magnetic materials

  • 41 Accesses

Abstract

Neutron diffraction technology as an advanced material research technique has special advantages in studying magnetic materials compared to the conventional techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). In this review, the applications of neutron diffraction technology on permanent magnetic materials were briefly reviewed: (1) the determination of the crystal structure and magnetic structure of the typical permanent magnet material, (2) in situ neutron diffraction study of the crystal structure evolution of the permanent magnets, and (3) phase transition in permanent magnetic materials.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. [1]

    Shull CG, Smart JS. Detection of antiferromagnetism by neutron diffraction. Phys Rev. 1949;76(8):1256.

  2. [2]

    Shull CG, Strauser WA, Wollan EO. Neutron diffraction by paramagnetic and antiferromagnetic substances. Phys Rev. 1951;83(2):333.

  3. [3]

    Herbst JF, Croat JJ, Pinkerton FE, Yelon WB. Relationships between crystal structure and magnetic properties in Nd2Fe14B. Phys Rev B. 1984;29(7):4176.

  4. [4]

    Isnard O. Neutron scattering of magnetic materials. In: Liu J, Fullerton E, Gutfleisch O, Sellmyer D, editors. Nanoscale Magnetic Materials and Applications. Boston: Springer; 2009. 123.

  5. [5]

    Yusuf SM, Kumar A. Neutron scattering of advanced magnetic materials. Appl Phys Rev. 2017;4(3):031303.

  6. [6]

    Sagawa M, Fujimora S, Yamamoto H, MaIsuura Y, Hiraga K. New material for permanent magnets on a base of Nd and Fe (invited). J Appl Phys. 1984;55(6):2083.

  7. [7]

    Croat JJ, Herbst JF, Lee RW, Pinkenon FE. Pr-Fe and Nd-Fe-based materials: a new class of high-performance permanent magnets (invited). J Appl Phys. 1984;55(6):2078.

  8. [8]

    Herbst JF, Croat JJ, Yelon WB. Structural and magnetic properties of Nd2Fe14B (invited). J Appl Phys. 1985;57(1):4086.

  9. [9]

    Coey JMD, Sun H. Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in ammonia. J Magn Magn Mater. 1990;87(3):L251.

  10. [10]

    Yang YC, Zhang XD, Ge SL, Kong LS, Pan Q. Structural and magnetic properties of the new type of rare earth-iron-nitrogen intermetallic compounds. J Rare Earths. 1991;2:81.

  11. [11]

    Chen XX, Yang L, Hu Z, Yan WL, Quan NT, Lu S, Yu DB, Xie JJ. Structure, nitridation efficiency and magnetic properties of SmFe powders and its nitrides. Rare Met. 2017. https://doi.org/10.1007/s12598-017-0943-4.

  12. [12]

    Yang YC, Zhang XD, Kong LS, Pan Q, Yang JL, Ding YF, Zhang BS, Ye CT, Jin L. Neutron diffraction study of ternary nitrides of the type R2Fe17Nx. J Appl Phys. 1991;70(10):6018.

  13. [13]

    Yang YC, Zhang XD, Kong LS, Pan Q, Yang JL, Ding YF, Zhang BS, Ye CT. Neutron diffraction study of the nitride YTiFe11Nx. Solid State Commun. 1991;78(4):313.

  14. [14]

    Yang JB, Mao WH, Yang YC, Ge SL, Cheng DF. Ab initio calculation of interstitial-atom effects in YFe10Mo2X (X = E, H, B, C, N, O, F). Phys Rev B. 1997;56(24):15647.

  15. [15]

    Yang JB, Mao WH, Chen BP, Yang YC, Xu H, Han BS, Ge S, Ku W. Magnetic properties and magnetic domain structures of NdFe10.5Mo1.5 and NdFe10.5Mo1.5Nx. Appl Phys Lett. 1997;71(22):3290.

  16. [16]

    Braun PB, Goedkoop JA. An X-ray and neutron diffraction investigation of the magnetic phase Al08.9Mn1.11. Acta Cryst. 1963;16(8):737.

  17. [17]

    Yang YC, Ho WW, Lin C, Yang JL, Zhao BM, Zhu JX, Zeng XX, Zhang BS, Jin L. Neutron diffraction study of hard magnetic alloy MnAlC. J Appl Phys. 1984;55(6):2053.

  18. [18]

    Pareti L, Bolzoni F, Leccabue F, Ermakov AE. Magnetic anisotropy of MnAl and MnAlC permanent magnet materials. J Appl Phys. 1986;59(11):3824.

  19. [19]

    Wei JZ, Song ZG, Yang YB, Liu SQ, Du HL, Han JZ, Zhou D, Wang CS, Yang YC, Franz A, Többens D, Yang JB. τ-MnAl with high coercivity and saturation magnetization. AIP Adv. 2014;4(12):127113.

  20. [20]

    Zhao H, Yang WY, Shao ZY, Tian G, Zhou D, Du HL, Liu SQ, Han JZ, Wang CS, Xu J, Yu DB, Yang JB. Structural evolution, site ordering and magnetic properties of tetragonal Mn6- yGa2 +y (0 ≤ y ≤ 1.64). Scr Mater. 2017;129:6.

  21. [21]

    Zhao H, Yang WY, Shao ZY, Tian G, Zhou D, Chen XP, Xia YH, Xie L, Liu SQ, Du HL, Han JZ, Wang CS, Yang YC, Yang JB. Structural evolution and magnetic properties of L10-type Mn54.5Al45.5-xGax (x = 0.0, 15.0, 25.0, 35.0, 45.5) phase. J Alloys Compd. 2016;680:14.

  22. [22]

    Schweitzer J, Tasset F. Polarised neutron study of the RCo5 intermetallic compounds. I. The cobalt magnetisation in YCo5. J Phys F. 1980;10(12):2799.

  23. [23]

    Givord D, Li HS, Tasset F. Polarized neutron study of the compounds Y2Fe14B and Nd2Fe14B. J Appl Phys. 1985;57(1):4100.

  24. [24]

    Givord D, Laforest J, Lemaire R. Polarized neutron study of the itinerant electron metamagnetism in ThCo5. J Appl Phys. 1979;50(11):7489.

  25. [25]

    Teplykh AE, Bogdanov SG, Choi Y, Kudrevatykh NV, Pirogov AN, Popov AG, Skryabin YN, Vyatkin VP. Determination of texture degree of NdFeB-magnets by means of neutron diffraction. Solid State Phenom. 2011;168–169:161.

  26. [26]

    Alker A, Jansen E, Schäfer W, Kirfel A, Seitz D, Grönefeld M. Neutron diffraction applied to the study of microstructure and texture of industrial magnetic alnico material. Mater Sci Forum. 1998;278–281:514.

  27. [27]

    Takeshita T. Present status of the hydrogenation-decomposition-desorption-recombination process as applied to the production of magnets. J Alloys Compd. 1993;193(1–2):231.

  28. [28]

    Gutfleisch O, Martinez N, Verdier M, Harris IR. Phase transformations during the disproportionation stage in the solid HDDR process in a Nd16Fe76B8 alloy. J Alloys Compd. 1994;215(1–2):227.

  29. [29]

    Liesert S, Fruchart D, de Rango P, Soubeyroux JL. The hydrogenation–disproportionation–desorption–recombination process of Nd2Fe14B studied by in situ neutron diffraction and thermomagnetic measurements. J Alloys Compd. 1997;253–254:140.

  30. [30]

    Soubeyroux JL, Fruchart D, Liesert S, de Rango P, Rivoirard S. In situ neutron diffraction study of the HDDR process of NdFeB magnets. Phys B. 1998;241–243:341.

  31. [31]

    Lyubina J, Isnard O, Gutfleisch O, Muller KH, Schultz L. Ordering of nanocrystalline Fe–Pt alloys studied by in situ neutron powder diffraction. J Appl Phys. 2006;100(9):094308.

  32. [32]

    Lyubina J, Opahle I, Richter M, Gutfleisch O, Muller KH, Schultz L, Isnard O. Influence of composition and order on the magnetism of Fe–Pt alloys: neutron powder diffraction and theory. Appl Phys Lett. 2006;89(3):032506.

  33. [33]

    Périgo EA, Gilbert EP, Michels A. Magnetic SANS study of a sintered Nd–Fe–B magnet: estimation of defect size. Acta Mater. 2015;87:142.

  34. [34]

    Perigo EA, Mettus D, Gilbert EP, Hautle P, Niketic N, van den Brandt B, Kohlbrecher J, McGuiness P, Fu Z, Michels A. Magnetic microstructure of a textured Nd–Fe–B sintered magnet characterized by small-angle neutron scattering. J Alloys Compd. 2016;661:110.

  35. [35]

    Thomson T, Toney MF, Raoux S, Lee SL, Sun S, Murray CB, Terris BD. Structural and magnetic model of self-assembled FePt nanoparticle arrays. J Appl Phys. 2004;96(2):1197.

  36. [36]

    Wolfers P, Bacmann M, Fruchart D. Single crystal neutron diffraction investigations of the crystal and magnetic structures of R2Fe14B (R = Y, Nd, Ho, Er). J Alloys Compd. 2001;317–318:39.

  37. [37]

    Yang JB, Kamaraju K, Yelon WB, James WJ, Cai Q, Bollero A. Magnetic properties of the MnBi intermetallic compound. Appl Phys Lett. 2001;79(12):1846.

  38. [38]

    Yang YB, Chen XG, Guo S, Yan AR, Huang QZ, Wu MM, Chen DF, Yang YC, Yang JB. Temperature dependences of structure and coercivity for melt-spun MnBi compound. J Magn Magn Mater. 2013;330:106.

  39. [39]

    Yang JB, Yang YB, Chen XG, Ma XB, Han JZ, Yang YC, Guo S, Yan AR, Huang QZ, Wu MM, Chen DF. Anisotropic nanocrystalline MnBi with high coercivity at high temperature. Appl Phys Lett. 2011;99(8):082505.

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2017YFA0403701, 2016YFB0700901, 2017YFA0206303 and 2017YFA0401502) and the National Natural Science Foundation of China (Nos. 51731001, 11675006, 11805006, 51371009 and 11504348).

Author information

Correspondence to Xiang-Dong Kong or Jin-Bo Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Liang, D., Kong, X. et al. Neutron diffraction studies of permanent magnetic materials. Rare Met. 39, 13–21 (2020) doi:10.1007/s12598-019-01300-8

Download citation

Keywords

  • Neutron diffraction
  • Permanent magnetic materials
  • Crystal structure
  • Magnetic structure
  • Structure evolution
  • Phase transition