Rare Metals

, Volume 39, Issue 1, pp 89–94 | Cite as

Development of high-performance dry-pressed anisotropic permanent ferrite for La–Ca–Sr–Co system

  • Dai-Man Zhu
  • Zhao-Wen Geng
  • Rong-Ming LiuEmail author
  • Xiao-Wen Zhou
  • Li-Ying Jia
  • Guo-Hui Hu
  • Qian Wang
  • Bing-Shan Li


In this work, the BMS-12 pre-sintered material was used as the basic material, and the optimal secondary additive addition amount was found by the wet pressing process. Then, the anisotropic ferrite material was prepared by dry-pressing method, and the effects of camphor adhesives, calcium stearate lubricant and powder particle size on the magnetic properties were studied. The experimental results show that the appropriate addition amount of camphor adhesive and calcium stearate lubricant is 0.6 wt% and 0.8 wt%, respectively. High remanence and coercivity can be obtained for particle size of 0.85–1.00 μm. Superior dry-pressed magnet ferrite was prepared with typical properties of magnetic induction intensity of Br = 421 mT, induction coercivity of Hcb = 296 kA·m−1, intrinsic coercivity of Hcj = 369 kA·m−1 and maximum energy product of (BH)max = 33.3 kJ·m−3, which have reached the level of TDK corporation product of FB5D. This shows that the dry-pressed magnet of La–Ca–Sr–Co system has higher remanence and intrinsic coercivity than the traditional wet-pressed Sr-ferrite.


Dry-press molding Permanent magnetic ferrite La–Ca–Sr–Co system Magnetic properties 



This work was financially supported by the National Natural Science Foundation of China (No. 51401023), the National Basic Research Program of China (No. 2014CB643702) and Youth Innovation Fund Project of BGRIMM Technology Group (Nos. QCJ201809, QC-201724 and QCJ201820).


  1. [1]
    Li X, Yang W, Bao D, Meng X, Lou B. Influence of Ca substitution on the microstructure and magnetic properties of SrLaCo ferrite. J Magn Magn Mater. 2013;329(Complete):1.CrossRefGoogle Scholar
  2. [2]
    Natali Sora I, Caronna T, Fontana F, De Julián Fernández C, Caneschi A, Green M. Crystal structures and magnetic properties of strontium and copper doped lanthanum ferrites. Cheminform. 2012;191(35):33.Google Scholar
  3. [3]
    Zargar Shoushtari M, Mousavi Ghahfarokhi SE, Ranjbar F. A study of the morlogical properties of SrFe12−xCoxO19 (x = 0, 0.1, 0.2) hexaferrite nanoparticles. J Supercond Novel Magn. 2015;28(5):1601.CrossRefGoogle Scholar
  4. [4]
    Shen SY, Zheng H, Zheng P, Wu Q, Deng JX, Ying ZH. Microstructure, magnetic properties of hexagonal barium ferrite powder based on calcination temperature and holding time. Rare Met. 2018. Scholar
  5. [5]
    Zhou Z, Wang Z, Wang X, Li Q, Jin M, Xu J. Preparation and magnetic properties of Nd–co-substituted M-type strontium ferrite by microwave-assisted synthesis method. J Supercond Novel Magn. 2015;28(6):1773.CrossRefGoogle Scholar
  6. [6]
    Dai J, Dai Y, Wang Z, Gao H. Preparation and magnetic properties of lanthanum- and cobalt-codoped M-type strontium ferrite nanofibres. J Exp Nanosci. 2015;10(4):249.CrossRefGoogle Scholar
  7. [7]
    Jianfeng D. Preparation and magnetic properties of La–Co co-doped M-type strontium ferrite nanofibres. Acta Phys Chim Sin. 2012;28(3):729.Google Scholar
  8. [8]
    Ashiq MN, Qureshi RB, Malana MA, Ehsan MF. Synthesis, structural, magnetic and dielectric properties of zirconium copper doped M-type calcium strontium hexaferrites. J Alloys Compd. 2014;617:437.CrossRefGoogle Scholar
  9. [9]
    Liu JL, Zhang P, Zhang XK, Xie QQ, Pan DJ, Zhang J, Zhang M. Synthesis and microwave absorbing properties of La-doped Sr-hexaferrite nanopowders via sol–gel auto-combustion method. Rare Met. 2017;36(9):704.CrossRefGoogle Scholar
  10. [10]
    Yuping L, Yunfei W, Daxin B. Enhanced coercivity of La–Co substituted Sr–Ca hexaferrite fabricated by improved ceramics process. J Mater Sci: Mater Electron. 2016;27(5):4433.Google Scholar
  11. [11]
    Iqbal MJ, Ashiq MN, Gul IH. Physical, electrical and dielectric properties of Ca-substituted strontium hexaferrite (SrFe12O19) nanoparticles synthesized by co-precipitation method. J Magn Magn Mater. 2010;322(13):1720.CrossRefGoogle Scholar
  12. [12]
    Gordani GR, Ghasemi A, Saidi A. Enhanced magnetic properties of substituted Sr-hexaferrite nanoparticles synthesized by co-precipitation method. Ceram Int. 2014;40(3):4945.CrossRefGoogle Scholar
  13. [13]
    Hajjaji W, Pullar RC, Zanelli C, Seabra MP, Dondi M, Labrincha JA. Compositional and chromatic properties of strontium hexaferrite as pigment for ceramic bodies and alternative synthesis from wiredrawing sludge. Dyes Pigm. 2013;96(3):659.CrossRefGoogle Scholar
  14. [14]
    Solovyova ED, Calzada ML, Belous AG. The effect of sol–gel preparation conditions on structural characteristics and magnetic properties of M-type barium hexaferrite thin films. J Sol–Gel Sci Technol. 2015;75(1):215.CrossRefGoogle Scholar
  15. [15]
    Fu YP, Lin CH. Fe/Sr ratio effect on magnetic properties of strontium ferrite powders synthesized by microwave-induced combustion process. J Alloys Compd. 2005;386(1–2):222.CrossRefGoogle Scholar
  16. [16]
    Wang Y, Li Q, Zhang C, Li B. Effect of Fe/Sr mole ratios on the formation and magnetic properties of SrFe12O19, microtubules prepared by sol–gel method. J Magn Magn Mater. 2009;321(19):3368.CrossRefGoogle Scholar
  17. [17]
    Teng Y, Lu B, Yao J. Influence of raw materials and milling technological process on magnetic properties of sintered anisotropic Sr-ferrite magnet. J Appl Phys. 1997;81(8):5134.CrossRefGoogle Scholar
  18. [18]
    Liu X, Zhong W, Yang S, Yu Z, Gu B, Du Y. Influences of La3+ substitution on the structure and magnetic properties of M-type strontium ferrites. J Magn Magn Mater. 2002;238(2–3):207.CrossRefGoogle Scholar
  19. [19]
    Huang K, Liu XS, Zhou S-Q, Wang Y, Cai X, Sun H-J, Ma B, Pablo H-G. Effect of La–Co substitution on the structure and magnetic properties of M-type strontium ferrites. J Magn Mater Devices. 2006;238(s2–3):207.Google Scholar
  20. [20]
    Kikuchi T, Nakamura T, Yamasaki T, Nakanishi M, Fujii T, Takada J. Magnetic properties of La–Co substituted M-type strontium hexaferrites prepared by polymerizable complex method. J Magn Magn Mater. 2010;322(16):2381.CrossRefGoogle Scholar
  21. [21]
    Peng L, Li L, Wang R, Hu Y, Zhong X. Synthesis and characteristics of La3+–Co2+, substituted Sr-hexaferrites for microwave LTCC circulators. J Magn Magn Mater. 2016;404:170.CrossRefGoogle Scholar
  22. [22]
    Long P, Li L, Rui W, Yun H, Tu X. Effect of La–Co substitution on the crystal structure and magnetic properties of hot press sintered Sr1−xLaxFe12−xCoxO19, (x = 0–0.5) ferrites for use in LTCC technology. J Magn Magn Mater. 2015;391:136.CrossRefGoogle Scholar
  23. [23]
    Peng L, Li L, Wang R, Hu Y, Tu X, Zhong X. Microwave sintered Sr1−xLaxFe12−xCoxO19, (x = 0–0.5) ferrites for use in low temperature co-fired ceramics technology. J Alloys Compd. 2016;656:290.CrossRefGoogle Scholar
  24. [24]
    Lechevallier L, Breton JML, Teillet J, Morel A, Kools F, Tenaud P. Mössbauer investigation of Sr1−xLaxFe12−yCoyO19 ferrites. Phys B Phys Condens Matter. 2003;327(2–4):135.CrossRefGoogle Scholar
  25. [25]
    Nishio H, Minachi Y, Yamamoto H. Effect of factors on coercivity in Sr–La–Co sintered ferrite magnets. IEEE Trans Magn. 2009;45(12):5281.CrossRefGoogle Scholar
  26. [26]
    Nishio H, Yamamoto H. Effect of important factors on temperature variation of coercivity in Sr–La–Co high-performance sintered ferrite magnets. IEEE Trans Magn. 2011;47(10):3641.CrossRefGoogle Scholar
  27. [27]
    Nishio H. Accurate determination of magnetic anisotropy constants for high-performance permanent magnets. IEEE Trans Magn. 2014;50(1):1.CrossRefGoogle Scholar
  28. [28]
    Chen Z, Wang F, Yan S, Nie Y, Feng Z, Chen Y. Enhanced coercivity of calaco-doped Sr M-hexaferrites by microwave-calcination technique. J Am Ceram Soc. 2014;97(6):1873.CrossRefGoogle Scholar
  29. [29]
    Kikuchi T, Nakamura T, Yamasaki T, Nakanishi M, Fujii T, Takada. Magnetic properties of La–Co substituted M-type strontium hexaferrites prepared by polymerizable complex method. J Magn Magn Mater. 2010;322(16):2381.CrossRefGoogle Scholar
  30. [30]
    Serletis C, Litsardakis G, Polychroniadis EK, Efthimiadis KG. Magnetic properties of chemical coprecipitated Sr0.8La0.2Fe11.8Co0.2O19 powders. J Alloys Compd. 2012;521:101.CrossRefGoogle Scholar
  31. [31]
    Zi ZF, Liu HY, Liu YN, Fang L, Liu QC, Dai JM. Magnetic properties of c-axis oriented Sr0.8La0.2Fe11.8Co0.2O19 ferrite film prepared by chemical solution deposition. J Magn Magn Mater. 2010;322(22):3638.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Engineering Technology Research Center for Magnetic Materials, BGRIMMBeijingChina
  2. 2.BGRIMM Magnetic Materials and Technology (Fuyang) Co., Ltd.FuyangChina

Personalised recommendations