High coercivity Pr2Fe14B/α-Fe nanocomposite permanent magnets with Zr addition

  • 56 Accesses


The ingots with nominal composition \({ \Pr }_{9.5} {\text{Fe}}_{84 - x} {\text{B}}_{6.4} {\text{P}}_{0.1} {\text{Zr}}_{x}\) (x = 0, 1, 2, 3) were prepared by an electric arc furnace under purified argon atmosphere. The ribbons were obtained by melt spinning at a wheel speed of 16–33 m·s−1. X-ray diffraction (XRD) results show that P addition decreases crystallinity of hard phase, but further Zr addition increases the amorphous-forming ability of soft phase. The intrinsic coercivity largely increases from 502 (Zr-free) to 945 kA·m−1 (2 at% Zr), which is among the highest value reported so far in this poor rare earth nanocomposite magnets. The hysteresis loops of the alloys with addition of 1 at% and 2 at% Zr show good squareness with single-phase characteristic, indicating well exchange coupling between hard and soft magnetic grains. Transmission electron microscope (TEM) results reveal small grain size and uniformity in the microstructure in the Zr-added samples, which is the reason for high coercivity.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. [1]

    Tan XH, Chan SF, Han K, Xu H. Combined effects of magnetic interaction and domain wall pinning on the coercivity in a bulk Nd60Fe30Al10 ferrimagnets. Sci Rep. 2014;4:6805.

  2. [2]

    Liu WQ, Chang C, Yue M, Yang JS, Zhang DT, Zhang JX, Liu YQ. Coercivity, microstructure, and thermal stability of sintered Nd-Fe-B magnets by grain boundary diffusion with TbH3 nanoparticles. Rare Met. 2017;36(9):718.

  3. [3]

    Wang L, Chen JW, Yue M, Liu RM, Liu WQ, Zhang DT, Zhang JX, Zhang PY, Ge HL. Crystallographic alignment and magnetic anisotropy in melt-spun Nd-Fe-B/α-Fe composite ribbons with different neodymium contents. J Rare Earth. 2011;29(5):471.

  4. [4]

    Ding HW, Cui CX, Yang W, Sun JB. Effects of cobalt addition on microstructure and magnetic properties of PrNdFeB/Fe7Co3 nanocomposite. J Rare Earth. 2017;35(5):468.

  5. [5]

    Tanaka K, Fukuzaki T, Miyasaka T, Nishimoto K, Muro Y, Nishio K, Tamura R. Magnetic properties of Nd-Fe-B-Zr bulk nanocomposite magnets prepared by spark plasma sintering method. J Phys Conf Ser. 2008;106:012014.

  6. [6]

    Zaluska A, Xu Y, Altounian Z, Strom-Olsen J. Effects of quench rate on the texture in melt-spun Nd–Fe–B alloys. Mater Sci Eng A. 1991;133:819.

  7. [7]

    Li ZB, Zhang M, Wang LC, Shen BG, Zhang XF, Li YF, Hu FX, Sun JR. Investigation on intergranular exchange coupling effect in Pr9Fe85.5B5.5 ribbons. Appl Phys Lett. 2014;104(5):052406.

  8. [8]

    Liu ZW, Qian DY, Zhao LZ, Zheng ZG, Gao XX, Ramanujan RV. Enhancing the coercivity, thermal stability and exchange coupling of nano-composite (Nd, Dy, Y)–Fe–B alloys with reduced Dy content by Zr addition. J Alloys Compd. 2014;606:44.

  9. [9]

    Schrefl T, Fidler J, Kronmüller H. Remanence and coercivity in isotropic nanocrystalline permanent magnets. Phys Rev B. 1994;49:6100.

  10. [10]

    Zhang XF, Zhang WK, Li YF, Liu YL, Li ZB, Ma Q, Shi MF, Liu F. Magnetic properties of melt-spun MM-Fe-B ribbons with different wheel speeds and mischmetal contents. Rare Met. 2017;36(12):992.

  11. [11]

    Jin Z, Okumura H, Zhang Y, Wang H, Muñoz J, Hadjipanayis G. Microstructure refinement and significant improvements of magnetic properties in Pr2Fe14B/α-Fe nanocomposites. J Magn Magn Mater. 2002;248(2):216.

  12. [12]

    Pang LJ, Sun GF, Chen JF, Qiang WJ, Li WA, Zhang JB. Preferred orientation in nanocomposite permanent magnet materials. J Rare Earth. 2006;24(1):76.

  13. [13]

    Ma SC, Ge Q, Yang S, Liu K, Han XQ, Yu K, Song Y, Zhang ZS, Jiang QZ, Chen CC, Liu RH, Zhong ZC. Microstructure, magnetic and magnetocaloric properties in Ni42.9Co6.9Mn38.3Sn11.9 alloy ribbons. AIP Adv. 2018;8(5):056410.

  14. [14]

    Wang L, Quan Q, Zhang L, Hu X, Rehman SU, Jiang Q, Du J, Zhong ZC. Microstructures, magnetic properties and coercivity mechanisms of Nd-Ce-Fe-B based alloys by Zr substitution. J Appl Phys. 2018;123(11):113904.

  15. [15]

    Tao S, Ahmad Z, Ma T, Yan M. Rapidly solidified Nd7Fe67B22Mo3Zr1 nanocomposite permanent magnets. J Magn Magn Mater. 2014;355:164.

  16. [16]

    Chang HW, Chiu CH, Chang CW, Chen CH, Chang WC, Yao YD, Sun AC. Effect of substitution of refractory elements for Fe on the magnetic properties of melt-spun Pr9.5Fe80.5B10 nanocomposites. J Alloys Compd. 2006;407(1–2):53.

  17. [17]

    Wang TP, Wang ZY, Yang WY, Zhou D, Wu JH, Zhou B, Jin ML, Dong GL, Sui YL. Differences in the structure and magnetic properties of (Nd0.75Pr0.25)9.5Fe76X4B10.5 (X = Nb, Zr) ribbons by conventional and microwave-assisted annealing treatment. J Rare Earth. 2017;35(7):667.

  18. [18]

    Betancourt I, Davies H. Influence of Zr and Nb dopant additions on the microstructure and magnetic properties of nanocomposite RE2(Fe, Co)14B/α (Fe, Co)(RE = Nd–Pr) alloys. J Magn Magn Mater. 2003;261:328.

  19. [19]

    Kawai R, Kamoi T, Fukuzaki T, Tamura R, Nishio K, Hayashi A, Aikawa N. Effect of Nb and Zr additions to magnetic properties of Nd-Fe-B bulk nanocomposites. J Phys Conf Ser. 2010;232(1):012008.

  20. [20]

    Wang C, Yan M, Zhang W. Effects of Nb and Zr additions on crystallization behavior, microstructure and magnetic properties of melt-spun (Nd, Pr)2Fe14B/α-Fe alloys. J Magn Magn Mater. 2006;306:195.

  21. [21]

    Wang C, Yan M, Li Q. Crystallization kinetics, microstructure and magnetic properties of Nd2Fe14B/α-Fe magnets with Zr addition. J Phys D Appl Phys. 2007;40(12):3551.

  22. [22]

    Pan M, Zhang P, Ge H, Hong Z, Wu Q, Jiao Z, Yang H. Effect of Zr addition on the magnetization reversal behavior for α-Fe/Pr2Fe14B nanocomposite alloys. Jpn J Appl Phys. 2011;50(9R):093001.

  23. [23]

    Bao XQ, Gao XX, Zhu J, Zhou SZ. Effect of zirconium content on exchange coupling and magnetization reversal of nanocrystalline Nd12.3Fe81.7–xZrx B6 alloy. J Rare Earth. 2011;29(10):939.

  24. [24]

    Sheng HC, Zeng XR, Li XH, Zou JZ, Xie SH. Improvement of the magnetic properties of Nd9.5Fe81Zr3B6.5 nanocomposite magnets by semi-melt spinning. J Magn Magn Mater. 2009;321:3042.

  25. [25]

    Zhang W, Kazahari A, Yubuta K, Makino A, Wang Y, Umetsu R, Li Y. Effect of P addition on the structure and magnetic properties of melt-spun Fe–Pt–B alloy. J Alloys Compd. 2014;586(s1):S294.

  26. [26]

    Zeng XR, Sheng HC, Jin CX, Qian HX. Magnetic properties and microstructure of melt-spun Nd2Fe14B/α-Fe nanocomposite magnets with a perpendicular anisotropy. J Magn Magn Mater. 2016;401:1155.

  27. [27]

    Senkov ON, Miracle DB. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater Res Bull. 2001;36(12):2183.

  28. [28]

    Zhao L, Hong Y, Fang X, Qiu Z, Zhong X, Gao X, Liu Z. High coercivity microcrystalline Nd-rich Nd–Fe–Co–Al–B bulk magnets prepared by direct copper mold casting. J Magn Magn Mater. 2016;408:152.

  29. [29]

    Liu Z, Davies H. Intergranular exchange interaction in nanocrystalline hard magnetic rare earth–iron–boron-based melt-spun alloy ribbons. J Phys D Appl Phys. 2009;42(14):145006.

  30. [30]

    Tang W, Wu Y, Dennis K, Kramer M, Anderson I, McCallum R. Effect of Zr substitution on microstructure and magnetic properties of YDy-based R2Fe14B magnets (R = Y + Dy + Nd). J Appl Phys. 2005;97(10):10H106.

Download references


This work was financially supported by the National Natural Science Foundation of China (Nos. 11474184 and 11627805) and Shandong Province Natural Science Foundation of China (No. ZR2016EMM14). We thank Song and Zhang from ZKKF (Beijing), and Cui from National Demonstration Physics Education (Shandong University) for the help of TEM and XRD support, respectively.

Author information

Correspondence to Guang-Bing Han.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alam, M.K., Han, G. & Kang, S. High coercivity Pr2Fe14B/α-Fe nanocomposite permanent magnets with Zr addition. Rare Met. 39, 41–47 (2020) doi:10.1007/s12598-019-01258-7

Download citation


  • Magnetic properties
  • Coercivity
  • Zr addition
  • Nanocomposite magnets