Advertisement

Rare Metals

pp 1–8 | Cite as

Synthesis of TiO2@ZnIn2S4 hollow nanospheres with enhanced photocatalytic hydrogen evolution

  • He Li
  • Zi-Hao Chen
  • Lei Zhao
  • Gui-Dong YangEmail author
Article
  • 28 Downloads

Abstract

In this work, we designed and prepared the novel TiO2@ZnIn2S4 nano-sized hollow structure via templating method assisted by hydrothermal synthesis process. Its unique hollow structure and type-II heterojunction between TiO2 hollow nanospheres and ZnIn2S4 nanosheet can provide enough interior cavities and transfer paths for the light absorption and charge quick migration. The crystal structure, morphology and charges separation property were measured. The characterization results show that the hollow-structured TiO2@ZnIn2S4 was successfully prepared, and the optimal sample exhibited excellent photocatalytic hydrogen generation compared with TiO2/ZnIn2S4 cluster exceeding by a factor of 1.1 under overall light irradiation. Specially, the detailed mechanism of the photocatalytic H2 evolution and charge carrier migration for the as-prepared TiO2@ZnIn2S4 hollow nanosphere was also studied.

Keywords

TiO2 ZnIn2S4 Photocatalysis Hydrogen evolution Hollow 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. U1862105), the Natural Science Basic Research Plan in Shaanxi Province of China (Nos. 2017JZ001 and 2018KJXX-008), the Fundamental Research Funds for the Central Universities (No. cxtd2017004), the Science and Technology Project of Henan Province (No. 182106000029), the Key Research and Development Program of Shaanxi Province (No. 2018ZDCXL-SF-02-04), K. C. Wong Education Foundation, Hong Kong, China and Australian Research Council. We also thank the technical help from International Center for Dielectric Research (ICDR), Xi’an Jiaotong University, Xi’an, China.

References

  1. [1]
    Wan-Kuen J, Yeon-Ji J. 2D graphene-assisted low-cost metal (Ag, Cu, Fe, or Ni)-doped TiO2, nanowire architectures for enhanced hydrogen generation. J Alloys Compd. 2018;765:106.CrossRefGoogle Scholar
  2. [2]
    Wah LF, Wei LC, Mun LK, Ching JJ. Enhance of TiO2 dopants incorporated reduced graphene oxide via RF magnetron sputtering for efficient dye-sensitised solar cells. Rare Met. 2018;37(11):919.CrossRefGoogle Scholar
  3. [3]
    Li G, Zhao Q, Yang H, Liu Z. Fabrication and characterization of ZnO-coated TiO2 nanotube arrays. Compos Interface. 2016;23(2):125.CrossRefGoogle Scholar
  4. [4]
    Li H, Yan X, Lin B, Xia M, Wei J, Yang B, Yang G. Controllable spatial effect acting on photo-induced CdS@CoP@SiO2 ball-in-ball nano-photoreactor for enhancing hydrogen evolution. Nano Energy. 2018;47:481.CrossRefGoogle Scholar
  5. [5]
    Lin B, Chen S, Dong F, Yang G. A ball-in-ball g-C3N4@SiO2 nano-photoreactor for highly efficient H2 generation and NO removal. Nanoscale. 2017;9(16):5273.CrossRefGoogle Scholar
  6. [6]
    Guo P, Shen Y, Song Y, Ma J, Lin YH, Nan CW. Self-etching Ni–Co hydroxides@Ni–Cu nanowire arrays with enhancing ultrahigh areal capacitance for flexible thin-film supercapacitors. Rare Met. 2017;36(9):758.CrossRefGoogle Scholar
  7. [7]
    Wang M, Sun L, Cai J, Huang P, Su Y, Lin C. A facile hydrothermal deposition of ZnFe2O4 nanoparticles on TiO2 nanotube arrays for enhanced visible light photocatalytic activity. J Mater Chem A. 2013;1(39):12082.CrossRefGoogle Scholar
  8. [8]
    Xiang Q, Yu J, Jaroniec M. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale. 2011;3(9):3670.CrossRefGoogle Scholar
  9. [9]
    Yan X, Xue C, Yang B, Yang G. Novel three-dimensionally ordered macroporous Fe3+-doped TiO2 photocatalysts for H2 production and degradation applications. Appl Surf Sci. 2017;394:248.CrossRefGoogle Scholar
  10. [10]
    Zhu Y, Wang L, Liu Y, Shao L, Xia X. In-situ hydrogenation engineering of ZnIn2S4 for promoted visible-light water splitting. Appl Catal B: Environ. 2019;241:483.CrossRefGoogle Scholar
  11. [11]
    Sun S, Gao L, Liu Y. Enhanced dye-sensitized solar cell using graphene–TiO2 photoanode prepared by heterogeneous coagulation. Appl Phys Lett. 2010;96(8):083113.CrossRefGoogle Scholar
  12. [12]
    Rangelmendez JR, Matos J, Cházaroruiz LF, González-Castillo AC, Barrios-Yáñez G. Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells. Appl Surf Sci. 2018;434:744.CrossRefGoogle Scholar
  13. [13]
    Motola M, Satrapinskyy L, Čaplovicová M, Roch T, Gregor M, Grančič B, Čaplovič L, Plesch G. Enhanced photocatalytic activity of hydrogenated and vanadium doped TiO2 nanotube arrays grown by anodization of sputtered Ti layers. Appl Surf Sci. 2018;434:1257.CrossRefGoogle Scholar
  14. [14]
    Lin B, Li H, An H, Hao W, Wei J, Dai Y, Ma C, Yang G. Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution. Appl Catal B: Environ. 2017;220:542.CrossRefGoogle Scholar
  15. [15]
    Tian Q, Wu W, Liu J, Wu Z, Yao W, Ding J, Jiang C. Dimensional heterostructures of 1D CdS/2D ZnIn2S4 composited with 2D graphene: designed synthesis and superior photocatalytic performance. Dalton T. 2017;46(9):2770.CrossRefGoogle Scholar
  16. [16]
    Xue C, Yan X, An H, Li H, Wei J, Yang G. Bonding CdS–Sn2S3 eutectic clusters on graphene nanosheets with unusually photoreaction-driven structural reconfiguration effect for excellent H2 evolution and Cr(VI) reduction. Appl Catal B: Environ. 2018;222:157.CrossRefGoogle Scholar
  17. [17]
    Chen G, Ning D, Fan LI, Fan Y, Luo Y, Li D, Meng Q. Enhancement of photocatalytic H2 evolution on ZnIn2S4 loaded with in situ photo-deposited MoS2 under visible light irradiation. Appl Catal B: Environ. 2014;160–161:614.CrossRefGoogle Scholar
  18. [18]
    Wei L, Chen Y, Zhao J, Li Z. Preparation of NiS/ZnIn2S4 as a superior photocatalyst for hydrogen evolution under visible light irradiation. Beilstein J Nanotechnol. 2013;4(12):949.CrossRefGoogle Scholar
  19. [19]
    Li H, Yu H, Chen S, Zhao H, Zhang Y, Quan X. Fabrication of graphene wrapped ZnIn2S4 microspheres heterojunction with enhanced interfacial contact and its improved photocatalytic performance. Dalton T. 2014;43(7):2888.CrossRefGoogle Scholar
  20. [20]
    Chen Z, Li D, Zhang W, Shao Y, Chen T, Sun M, Fu X. Photocatalytic degradation of dyes by ZnIn2S4 microspheres under visible light irradiation. J Phys Chem C. 2009;113(11):4433.CrossRefGoogle Scholar
  21. [21]
    Shen S, Chen X, Ren F, Kronawitter CX, Mao SS, Guo L. Solar light-driven photocatalytic hydrogen evolution over ZnIn2S4 loaded with transition-metal sulfides. Nanoscale Res Lett. 2011;6(1):290.CrossRefGoogle Scholar
  22. [22]
    Liu Y. Hydrothermal synthesis of TiO2–RGO composites and their improved photocatalytic activity in visible light. RSC Adv. 2014;4(68):36040.CrossRefGoogle Scholar
  23. [23]
    Xue C, Li H, An H, Yang B, Wei J, Yang G. NiSx quantum dots accelerate electron transfer in Cd0.8Zn0.2S photocatalytic system via an rGO Nanosheet “Bridge” toward visible-light-driven hydrogen evolution. ACS Catal. 2018;8(2):1532.CrossRefGoogle Scholar
  24. [24]
    Lin B, An H, Yan X, Zhang T, Wei J, Yang G. Fish-scale structured g-C3N4, nanosheet with unusual spatial electron transfer property for high-efficiency photocatalytic hydrogen evolution. Appl Catal B: Environ. 2017;210:173.CrossRefGoogle Scholar
  25. [25]
    Chen J, Zhao D, Diao Z, Wang M, Shen S. Ferrites boosting photocatalytic hydrogen evolution over graphitic carbon nitride: a case study of (Co, Ni)Fe2O4 modification. Mater Sci. 2016;61(4):292.Google Scholar
  26. [26]
    Tan Y, Liu M, Wei D, Tang H, Feng X, Shen S. A single green approach to synthesis of sub-100 nm carbon spheres as template for TiO2 hollow nanospheres with enhanced photocatalytic activities. Sci China Mater. 2018;61(6):869.CrossRefGoogle Scholar
  27. [27]
    Li Y, Guo Y, Ran L, Dong L, Zhao M, Tan Y, Gao C, Shen S, Xiong Y. Steering plasmonic hot electrons to realize enhanced full-spectrum photocatalytic hydrogen evolution. Chinese J Catal. 2018;39(3):453.CrossRefGoogle Scholar
  28. [28]
    Wang B, Shen S, Mao SS. Black TiO2 for solar hydrogen conversion. J Mater. 2017;3(2):96.Google Scholar
  29. [29]
    Shen S, Chen J, Wang M, Sheng X, Chen X, Feng X, Mao SS. Titanium dioxide nanostructures for photoelectrochemical applications. Prog Mater Sci. 2018;98:299.CrossRefGoogle Scholar
  30. [30]
    Wang M, Zhang S, Du ZF, Sun LD, Zhao DL. Novel dye-sensitized solar cell architecture using TiO2-coated Ag nanowires array as photoanode. Chin J Rare Met. 2019;38(4):316.CrossRefGoogle Scholar
  31. [31]
    Low FW, Lai CW, Hamid SBA. Surface modification of reduced graphene oxide film by Ti ion implantation technique for high dye-sensitized solar cells performance. Ceram Int. 2017;43(1):625.CrossRefGoogle Scholar
  32. [32]
    Zhai YQ, Li RF, Li X, Li JH. Rapid synthesis and properties of color-tunable phosphors SrMoO4: Eu3+, Tb3+. Rare Met. 2017;36(10):828.CrossRefGoogle Scholar
  33. [33]
    Sun K, Fan RH, Zhang ZD, Yan KL, Zhang XH, Cheng CB, Chen M, Xie PT. Electromagnetic attenuation property of multiphase Fe–Fe3O4–Al2O3 cermets near percolation threshold. Rare Met. 2017;36(1):42.CrossRefGoogle Scholar
  34. [34]
    You JH, Wang RC, Han F, Guo R, Liu XW. Synthesis and luminescence properties of Mn3+, Bi3+ co-doped Y6WO12 for blue phosphor. Rare Met. 2018;37(5):439.CrossRefGoogle Scholar
  35. [35]
    Yan YC, Shi W, Jiang HC, Xiong J, Zhang WL. Fabrication and characterization of NiO films for energetic nano-multilayers by direct current reactive sputtering. Rare Met. 2018;37(7):594.CrossRefGoogle Scholar
  36. [36]
    Wachiraporn M, Anukorn P, Somchai T, Titipun T. Photoluminescence and photonic absorbance of Ce2(MoO4)3 nanocrystal synthesized by microwave hydrothermal solvothermal method. Rare Met. 2018;37(10):868.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and TechnologyXi’an Jiaotong UniversityXi’anChina
  2. 2.School of Civil Engineering and ArchitectureXinxiang UniversityXinxiangChina

Personalised recommendations