Rare Metals

pp 1–8 | Cite as

Microstructure and properties of W–4.9Ni–2.1Fe heavy alloy with Dy2O3 addition

  • Yuan-Feng Xie
  • Liang-Liang Zhou
  • Xiao-Yong Zhang
  • Xiao-Xian Li
  • Zeng-Lin Zhou
  • Xue-Hui ZhangEmail author


The W–4.9Ni–2.1Fe–xDy2O3 heavy alloy was fabricated by high-energy ball milling and spark plasma sintering (SPS) technique, and the microstructure, mechanical and friction behavior and anti-corrosion ability were investigated by scanning electron microscope (SEM), Rockwell hardness tester, X-ray diffraction (XRD), reciprocating friction and wear tester, electrochemical station, etc. The results show that the trace Dy2O3 particles, which mainly distributes in the W–M (tungsten-matrix) interface and the tungsten matrix phase, can dramatically decrease the tungsten grain size and the amount of O and P impurities aggregating in the interface, promote the γ-(Ni, Fe) bonding phase and tungsten particles uniform distribution, and increase the relative density, hardness, and wear and corrosion resistance properties. But the excessive Dy2O3 addition can make the inhibition effect weaken, resulting in the decrease in the comprehensive performances of the alloy. So, the amount of Dy2O3 should be appropriate. When the adding amount of Dy2O3 particles is 0.7 wt%, the comprehensive performances of the heavy alloy are the best.


Dysprosium oxide W–4.9Ni–2.1Fe alloy Spark plasma sintering Mechanical property Anti-corrosion ability 



This study was financially supported by the National Natural Science Foundation of China (Nos. 518711145 and 51804138) and the Natural Science Foundation of Jiangxi Province (Nos. 20161BAB206136, 20161BAB216121 and GJJ150638).


  1. [1]
    Senthilnathan N, Annamalai AR, Venkatachalam G. Sintering of tungsten and tungsten heavy alloys of W–Ni–Fe and W–Ni–Cu: a review. Trans Indian Inst Met. 2017;70(5):1161.CrossRefGoogle Scholar
  2. [2]
    Wu Z, Zhang Y, Yang CM, Liu QJ. Mechanical properties of tungsten heavy alloy and damage behaviors after hypervelocity impact. Rare Met. 2014;33(4):414.CrossRefGoogle Scholar
  3. [3]
    Senthilnathan N, Annamalai AR, Venkatachalam G. Microstructure and mechanical properties of spark plasma sintered tungsten heavy alloys. Mater Sci Eng A. 2018;710:66.CrossRefGoogle Scholar
  4. [4]
    Lu WR, Gao CY, Ke YL. Constitutive modeling of two-phase metallic composites with application to tungsten-based composite 93W–4.9Ni–2.1Fe. Metal Mater Trans A. 2014;592:136.Google Scholar
  5. [5]
    Xiang DP, Ding L, Li YY. Fabrication fine-grained tungsten heavy alloy by spark plasma sintering of low-energy ball-milled W–2Mo–7Ni–3Fe powders. Metal Mater Trans A. 2013;578:18.Google Scholar
  6. [6]
    Khalid FA, Bhatti MR. Microstructure and properties of sintered tungsten heavy alloys. J Mater Eng Perform. 1999;8(1):46.CrossRefGoogle Scholar
  7. [7]
    Upadhyaya A. Processing strategy for consolidating tungsten heavy alloys for ordnance applications. Mater Chem Phys. 2001;67:101.CrossRefGoogle Scholar
  8. [8]
    Chaurasia JK, Jitender K, Muthuchamy A, Patel PN, Annamalai AR. Densification of SiC particle reinforced W–Ni–Fe heavy alloy composites through conventional and spark plasma sintering. Trans Indian Inst Met. 2017;70(8):2185.CrossRefGoogle Scholar
  9. [9]
    Liu HY, Cao SH. Densification, microstructure and mechanical properties of 90W–4Ni–6Mn heavy alloy. Int J Refract Met Hard Mater. 2013;37:121.CrossRefGoogle Scholar
  10. [10]
    Fan JL, Huang BY, Xiao LP, Kear BH. Sintering behavior of nanostructured W based composite powder. Int J Powder Metall. 2005;41:49.Google Scholar
  11. [11]
    Li XQ, Hu K, Qu SG, Li L, Yang C. 93W–5.6Ni–1.4Fe heavy alloys with enhanced performance prepared by cyclic spark plasma sintering. Mater Sci Eng A. 2014;599:233.CrossRefGoogle Scholar
  12. [12]
    Tanabe T, Wada M, Ohgo T, Philipps V. The TEXTOR team, application of tungsten for plasma limiters in TEXTOR. J Nucl Mater. 2000;283/287:1128.CrossRefGoogle Scholar
  13. [13]
    Song GM, Wang YJ, Zhou Y. Thermomechanical properties of TiC particle-reinforced tungsten composites for high temperature applications. Int J Refract Met Hard Mater. 2003;21:1.CrossRefGoogle Scholar
  14. [14]
    Mabuchi M, Okamoto K, Satio N. Tensile properties at elevated temperature of W–1% La2O3. Mater Sci Eng A. 1996;214:174.CrossRefGoogle Scholar
  15. [15]
    Ryu HJ, Hong SH. Fabrication and properties of mechanically alloyed oxide-dispersed tungsten heavy alloys. Mater Sci Eng A. 2003;363:179.CrossRefGoogle Scholar
  16. [16]
    Wang RX, Guo ZM, Luo J, Ye Q, Yang F. Preparation and properties of dispersion strengthening W–Ni–Fe heavy alloy. Rare Met. 2017;41(1):20.Google Scholar
  17. [17]
    Kim Y, Lee S, Kim EP, Noh JW. Effects of ThO2 on the solid-state sintering behavior of W–Ni–Fe alloy. Int J Refract Met Hard Mater. 2011;29(1):112.CrossRefGoogle Scholar
  18. [18]
    Mueller AJ, Bianco R, Buckman RW. Evaluation of oxide dispersion strengthened (ODS) molybdenum and molybdenum–rhenium alloys. Int J Refract Met Hard Mater. 2000;18:205.CrossRefGoogle Scholar
  19. [19]
    Zhao MY, Zhou ZJ, Ding QM, Zhong M, Arshad K. Effect of rare earth elements on the consolidation behavior and microstructure of tungsten alloys. Int J Refract Met Hard Mater. 2014;48:19.CrossRefGoogle Scholar
  20. [20]
    Patra A, Sahoo RR, Karak SK, Sahoo SK. Effect of nano Y2O3 dispersion on thermal, microstructure, mechanical and high temperature oxidation behavior of mechanically alloyed W-Ni–Mo–Ti. Int J Refract Met Hard Mater. 2018;70:134.CrossRefGoogle Scholar
  21. [21]
    Pan YL, Ding L, Li H, Xiang DP. Effects of Y2O3 on the microstructure and mechanical properties of spark plasma sintered fine-grained W–Ni–Mn alloy. J Rare Earth. 2017;35(11):1149.CrossRefGoogle Scholar
  22. [22]
    Fan JL, Gong X, Huang BY, Song M, Liu T, Qi MG, Tian JM, Li SK. Dynamic failure and adiabatic shear bands in fine-grain 93W–4.9Ni–2.1Fe alloy with Y2O3 addition under lower high-strain-rate (HSR) compression. Mech Mater. 2010;42(1):24.CrossRefGoogle Scholar
  23. [23]
    Zhang XH, Zhou LL, Li XX, Zhang CZ. Effect of Y2O3 on friction and wear behavior of W–4.9Ni–2.1Fe alloy. J Mater Eng. 2017;45(11):115.Google Scholar
  24. [24]
    Yari S, Dehghanian C. Deposition and characterization of nanocrystalline and amorphous Ni–W coatings with embedded alumina nanoparticles. Ceram Int. 2013;39:7759.CrossRefGoogle Scholar
  25. [25]
    Fan JL, Liu T, Cheng HC, Wang DL. Preparation of fine grain tungsten heavy alloy with high properties by mechanical alloying and yttrium oxide addition. J Mater Process Techonol. 2008;208:463.CrossRefGoogle Scholar
  26. [26]
    Li J, Ngam JW, Xu J, Shan D, Guo B, Langdon TG. Wear resistance of an ultrafine-grained Cu-Zr alloy processed by equal-channel angular pressing. Wear. 2015;10–19(326–327):10.CrossRefGoogle Scholar
  27. [27]
    El Aal MIA, Kim HS. Wear properties of high pressure torsion processed ultrafine grained Al–7%Si alloy. Mater Des. 2014;53:373.CrossRefGoogle Scholar
  28. [28]
    Yamanoglu R, Karakulak E, Zeren A, Zeren M. Effect of heat treatment on the tribological properties of Al–Cu–Mg/nano SiC composites. Mater Des. 2013;49:820.CrossRefGoogle Scholar
  29. [29]
    Yi F, He Y, Luo PY, Shi TH, Xi C. Pulse current electrodeposition and properties of Ni–W–GO composite coatings. J Electrochem Soc. 2016;163(3):68.Google Scholar
  30. [30]
    Wu GC, Yang JM, Wang DW. Effect of La doping on impurity segregation and fracture behavior of tungsten-based heavy-alloy composites. J Adv Mater. 2007;2:47.Google Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringJiangxi University of Science and TechnologyGanzhouChina
  2. 2.Institute of Engineering and TechnologyGeneral Research Institute for Nonferrous MetalsBeijingChina

Personalised recommendations