Advertisement

Rare Metals

pp 1–19 | Cite as

Role of Cu element in biomedical metal alloy design

  • Er-Lin ZhangEmail author
  • Shan Fu
  • Ruo-Xian Wang
  • Hai-Xia Li
  • Ying Liu
  • Zhi-Qiang Ma
  • Guang-Kun Liu
  • Chen-Shun Zhu
  • Gao-Wu Qin
  • Da-Fu ChenEmail author
Article

Abstract

Biomedical metals are widely used as implant materials in the human or animal body to repair organs and restore function, such as heart valves, meninges, peritoneum and artificial organs. Alloying element affects the microstructure, mechanical property, corrosion resistance and wear resistance, but also influences the antibacterial and biological activity. Recently, antibacterial metal alloys have shown great potential as a new kind of biomedical materials, in which Cu has been widely used as antibacterial agent element. In addition, biodegradable metal alloys, including magnesium alloy and zinc alloy, also have attracted much attention worldwide. Cu was also used as alloying element to adjust the degradation rate. Thus, the role of Cu in the alloy design will be very important for the development of new alloy. In this paper, we summarized the recent research results on the Cu-containing metal alloy for biomedical application and hoped that this review would give more suggestions for the further development of biomedical metal alloy.

Keywords

Cu Biomedical metal alloy Corrosion resistance Antibacterial property Biological property 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 81071262 and 31470930) and the Beijing Municipal Natural Science Foundation (No. 7161001).

References

  1. [1]
    Yu WJ. Study on microstructure and properties of Ti–Nb–Zr alloys. Beijing: General Research Institute for Nonferrous Metals; 2012. 3.Google Scholar
  2. [2]
    Zipper JA, Tatum HJ, Pastene L, Medel M, Rivera M. Metallic copper as an intrauterine contraceptive adjunct to the “T” device. Am J Obstet Gynecol. 1969;105(8):1274.CrossRefGoogle Scholar
  3. [3]
    Chen WJ, Wu YY, Shen JN. Effect of copper and bronze addition on corrosion resistance of alloyed 316L stainless steel cladded on plain carbon steel by powder metallurgy. Mater Sci Technol. 2004;20(2):217 (English version).Google Scholar
  4. [4]
    Chen C, Feng X, Shen Y. Microstructure and mechanical properties of Ti–Cu amorphous coating synthesized on pure Cu substrate by mechanical alloying method. Rare Met. 2018.  https://doi.org/10.1007/s12598-018-1115-x.CrossRefGoogle Scholar
  5. [5]
    Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol. 2014;116(5):33.CrossRefGoogle Scholar
  6. [6]
    Hart EB, Steenbock H, Waddell J, Elvehjem CA. Iron in nutrition VII. Copper as a supplement to iron for hemoglobin building in the rat. Nutr Rev. 2010;45(8):181.CrossRefGoogle Scholar
  7. [7]
    Barbucci R, Magnani A, Lamponi S, Mitola S, Ziche M, Morbidelli L, Bussolino F. Cu (II) and Zn (II) complexes with hyaluronic acid and its sulphated derivative. Effect on the motility of vascular endothelial cells. J Inorg Biochem. 2000;81(4):229.CrossRefGoogle Scholar
  8. [8]
    Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials. 2013;34(2):422.CrossRefGoogle Scholar
  9. [9]
    Shi F, Liu Y, Zhi W, Xiao D, Li H, Duan K, Qu S, Weng J. The synergistic effect of micro/nano-structured and Cu2+-doped hydroxyapatite particles to promote osteoblast viability and antibacterial activity. Biomed Mater. 2017;12(3):035006.CrossRefGoogle Scholar
  10. [10]
    Liu R, Tang Y, Zeng L, Zhao Y, Ma Z, Sun Z, Xiang L, Ren L, Yang K. In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application. Dent Mater. 2018;34(8):1112.CrossRefGoogle Scholar
  11. [11]
    Borkow G, Gabbay J, Dardik R, Eidelman AI, Lavie Y, Grunfeld Y, Ikher S, Huszar M, Zatcoff RC, Marikovsky M. Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings. Wound Repair Regen. 2010;18(2):266.CrossRefGoogle Scholar
  12. [12]
    Takeuchi K, Mori A, Yamamoto S, Sonoda T, Nagata Y. Effect of the secretions from the IUD—bearing uterus on peri—implantation mouse embryos. Contraception. 1990;41(6):655.CrossRefGoogle Scholar
  13. [13]
    Liu HF, Liu ZL, Xie CS, Yu J, Zhu CH. The antifertility effectiveness of copper/low-density polyethylene nanocomposite and its influence on the endometrial environment in rats. Contraception. 2007;75(2):157.CrossRefGoogle Scholar
  14. [14]
    Strause L, Saltman P, Glowacki J. The effect of deficiencies of manganese and copper on osteoinduction and on resorption of bone particles in rats. Calcif Tissue Int. 1987;41(3):145.CrossRefGoogle Scholar
  15. [15]
    Gargiulo N, Cusano AM, Causa F, Caputo D, Netti PA. Silver-containing mesoporous bioactive glass with improved antibacterial properties. J Mater Sci-Mater Med. 2013;24(9):2129.CrossRefGoogle Scholar
  16. [16]
    Lin HM, Zhang J, Qu FY, Jiang JJ, Jiang PP. In vitro hydroxyapatite-forming ability and antimicrobial properties of mesoporous bioactive glasses doped with Ti/Ag. J Nanomater. 2013;2013(6397):24.Google Scholar
  17. [17]
    Zhu YF, Li XL, Yang JH, Wang SL, Gao H, Hanagata N. Composition–structure–property relationships of the CaO–MxOy–SiO2–P2O5 (M = Zr, Mg, Sr) mesoporous bioactive glass (MBG) scaffolds. J Mater Chem. 2011;21(25):9208–18.CrossRefGoogle Scholar
  18. [18]
    Zhang JC, Li YP, Yang KN, Hao XH. Effects of Cu2+ and Cu+ on the proliferation, differentiation and calcification of primary mouse osteoblasts in vitro. Chin J Inorgan Chem. 2010;26(12):2251.Google Scholar
  19. [19]
    Wu C, Zhou Y, Fan W, Han P, Chang J, Yuen J, Zhang M, Xiao Y. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials. 2012;33(7):2076.CrossRefGoogle Scholar
  20. [20]
    Klevay LM. Copper in legumes may lower heart disease risk. Arch Intern Med. 2002;162(15):1780.CrossRefGoogle Scholar
  21. [21]
    Hu GF. Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem. 2015;69(3):326.CrossRefGoogle Scholar
  22. [22]
    Giavaresi G, Torricelli P, Fornasari PM, Giardino R, Barbucci R, Leone G. Blood vessel formation after soft-tissue implantation of hyaluronan-based hydrogel supplemented with copper ions. Biomaterials. 2005;26(16):3001.CrossRefGoogle Scholar
  23. [23]
    Rahman ML, Sarjadi MS, Arshad SE, Yusoff MM, Sarkar SM, Musta B. Kenaf cellulose-based poly (amidoxime) ligand for adsorption of rare earth ions. Rare Met. 2018.  https://doi.org/10.1007/s12598-018-1061-7.CrossRefGoogle Scholar
  24. [24]
    Sen CK, Khanna S, Venojarvi M, Trikha P, Ellison EC, Hunt TK, Roy S. Copper-induced vascular endothelial growth factor expression and wound healing. Am J Physiol Heart Circ Physiol. 2002;282(5):H1821.CrossRefGoogle Scholar
  25. [25]
    Linder MC, Hazeghazam M. Copper biochemistry and molecular biology. Am J Clin Nutr. 1996;63(5):797S.Google Scholar
  26. [26]
    Winge DR, Mehra RK. Host defenses against copper toxicity. Int Rev Exp Pathol. 1990;31:47.CrossRefGoogle Scholar
  27. [27]
    Aggett PJ. An overview of the metabolism of copper. Eur J Med Res. 1999;4(6):214.Google Scholar
  28. [28]
    Organization WH. Trace elements in human nutrition and health. Indian J Med Res. 1997;105(5):246.Google Scholar
  29. [29]
    Trumbo P, Yates AA, Schlicker S, Poos M. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc. 2001;101(3):294.CrossRefGoogle Scholar
  30. [30]
    Linder MC, Hazegh-Azam M. Copper biochemistry and molecular biology. Am J Clin Nutr. 1996;63(5):797S.Google Scholar
  31. [31]
    Scheiber I, Dringen R, Mercer JFB. Copper: effects of deficiency and overload. Metal Ions Life Sci. 2013;13(13):359.CrossRefGoogle Scholar
  32. [32]
    Lüthen F, Bergemann C, Bulnheim U, Prinz C, Neumann HG, Podbielski A, Bader R, Rychly J. A dual role of copper on the surface of bone implants. Mater Sci Forum. 2010;638–642:600.CrossRefGoogle Scholar
  33. [33]
    Ning C, Wang X, Li L, Zhu Y, Li M, Yu P, Zhou L, Zhou Z, Chen J, Tan G. Concentration ranges of antibacterial cations for showing the highest antibacterial efficacy but the least cytotoxicity against mammalian cells: implications for a new antibacterial mechanism. Chem Res Toxicol. 2015;28(9):1815.CrossRefGoogle Scholar
  34. [34]
    Burghardt I, Lüthen F, Prinz C, Kreikemeyer B, Zietz C, Neumann HG, Rychly J. A dual function of copper in designing regenerative implants. Biomaterials. 2015;44(44):36.CrossRefGoogle Scholar
  35. [35]
    Klinkajon W, Supaphol P. Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings. Biomed Mater. 2014;9(4):045008.CrossRefGoogle Scholar
  36. [36]
    Wu J, Wang L, He J, Zhu C. In vitro cytotoxicity of Cu2+, Zn2+, Ag+ and their mixtures on primary human endometrial epithelial cells. Contraception. 2012;85(5):509.CrossRefGoogle Scholar
  37. [37]
    Stout JE, Yu VL. Experiences of the first 16 hospitals using copper-silver ionization for Legionella control: implications for the evaluation of other disinfection modalities. Infect Control Hosp Epidemiol. 2003;24(8):563.CrossRefGoogle Scholar
  38. [38]
    Michels HT, Anderson DG. Antimicrobial regulatory efficacy testing of solid copper alloy surfaces in the USA. Metal Ions Biol Med. 2008;10(2):185.Google Scholar
  39. [39]
    Wang XL, Liu S, Li M, Yu P, Chu X, Li L, Tan G, Wang Y, Chen X, Zhang Y. The synergistic antibacterial activity and mechanism of multicomponent metal ions-containing aqueous solutions against Staphylococcus aureus. J Inorg Biochem. 2016;163:214.CrossRefGoogle Scholar
  40. [40]
    Zevenhuizen LPTM, Dolfing J, Eshuis EJ, Scholtenkoerselman IJ. Inhibitory effects of copper on bacteria related to the free ion concentration. Microb Ecol. 1979;5(2):139.CrossRefGoogle Scholar
  41. [41]
    Fan WD, Yang QW, Guo B, Bo L, Zhang SG. Crystallization mechanism of glass-ceramics prepared from stainless steel slag. Rare Met. 2018;37(5):413.CrossRefGoogle Scholar
  42. [42]
    Ye D, Li J, Wang J, Su J, Zhao K. Effect of Cu addition on microstructure and mechanical properties of 15% Cr super martensitic stainless steel. Mater Des. 2012;41:16–22.CrossRefGoogle Scholar
  43. [43]
    Yongxia W, Dasheng L. Study on copper—containing antimicrobial stainless steel materials. J Yancheng Inst Technol Nat Sci Ed. 2017;30(1):1.Google Scholar
  44. [44]
    Yamashita M, Miyuki H, Matsuda Y, Nagano H, Misawa T. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century. Cheminform. 1994;25(19):283.Google Scholar
  45. [45]
    Thompson SW, Krauss G. Copper precipitation during continuous cooling and isothermal aging of a710-type steels. Metall Mater Trans A. 1996;27(6):1573.CrossRefGoogle Scholar
  46. [46]
    Panwar S, Goel DB, Pandey OP, Prasad KS. Aging of a copper bearing HSLA-100 steel. Bull Mater Sci. 2003;26(4):441.CrossRefGoogle Scholar
  47. [47]
    Gang L, Jicheng S, Rumeng W. Effect of copper on properties of ferritic antibacterial stainless steel. Funct Mater. 2011;42(S3):549.Google Scholar
  48. [48]
    Feng H, Jiang HC, Rong LJ, Wang L. Effect of cu content on corrosion resistance of a high strength low alloy weathering steel. Corros Sci Prot Technol. 2011;23(4):318.Google Scholar
  49. [49]
    Sun F, Li XG, Zhang F, Cheng X, Zhou C, Wu NC, Yin Y, Zhao J. Corrosion mechanism of corrosion-resistant steel developed for bottom plate of cargo oil tanks. Acta Metall Sin Engl Lett. 2016;26(3):257.CrossRefGoogle Scholar
  50. [50]
    Hao X, Dong J, Wei J, Etim IIN, Ke W. Effect of Cu on corrosion behavior of low alloy steel under the simulated bottom plate environment of cargo oil tank. Corros Sci. 2017;121:84.CrossRefGoogle Scholar
  51. [51]
    Yang K, Dong JS, Chen SH, Li MQ. Process and corrosion resistance of stainless steel containing Cu. J Mater Res. 2006;20(5):523.Google Scholar
  52. [52]
    Trethewey KR, Paton M. Electrochemical impedance behaviour of type 304L stainless steel under tensile loading. Mater Lett. 2004;58(27–28):3381.CrossRefGoogle Scholar
  53. [53]
    Simmons JW. Overview: high-nitrogen alloying of stainless steels. Mater Sci Eng, A. 1996;207(2):159.CrossRefGoogle Scholar
  54. [54]
    Zhang A, Li L, Qiao J. Microstructure and properties of antibacterial martensite stainless steel containing copper. Metal Funct Mater. 2007;14(2):14.Google Scholar
  55. [55]
    Bahmani-Oskooee M, Nedjad SH, Samadi A, Kozeschnik E. Cu-bearing, martensitic stainless steels for applications in biological environments. Mater Des. 2017;130:442.CrossRefGoogle Scholar
  56. [56]
    Hong IT, Koo CH. Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel. Mater Sci Eng, A. 2005;393(1):213.CrossRefGoogle Scholar
  57. [57]
    Sen I, Amankwah E, Kumar NS, Fleury E, Oh-Ishi K, Hono K, Ramamurty UJMS. Microstructure and mechanical properties of annealed SUS 304H austenitic stainless steel with copper. Mater Sci Eng. 2011;528(13):4491.CrossRefGoogle Scholar
  58. [58]
    Xi T, Shahzad MB, Xu D, Zhao J, Yang C, Qi M, Yang K. Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: a comprehensive cross-correlation study. Mater Sci Eng, A. 2016;675:243.CrossRefGoogle Scholar
  59. [59]
    Ye D, Li J, Rong LY, Long YQ, Jie SU, Cao JC, Tao JM, Zhao KY. The microstructure and properties of super martensitic stainless steel microalloyed with tungsten and copper. Mater Process Rep. 2012;27(1):88.Google Scholar
  60. [60]
    Gollapudi S, Sarkar R, Babu UC, Sankarasubramanian R, Nandy TK, Gogia AK. Microstructure and mechanical properties of a copper containing three phase titanium alloy. Mater Sci Eng, A. 2011;528(22–23):6794.CrossRefGoogle Scholar
  61. [61]
    Chi CY, Yu HY, Dong JX, Liu WQ, Cheng SC, Liu ZD, Xie XS. The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe–Cr–Ni type austenitic heat resistant steel for USC power plant application. Prog Nat Sci Mater Int. 2012;22(3):175.CrossRefGoogle Scholar
  62. [62]
    Okubo N, Nakamura R, Yamamoto M. Antimicrobial performance and material properties of antibacterial stainless steel “NSSAM series”. Nisshin Steel Technol News. 1998;3(2):25.Google Scholar
  63. [63]
    Ren YB, Yang K, Yang HJ, Zhang BC. In vitro biocompatibility of a new high nitrogen nickel free austenitic stainless steel. Key Eng Mater. 2007;342:605.CrossRefGoogle Scholar
  64. [64]
    Ren L, Zhu JM, Nan L, Yang K. Differential scanning calorimetry analysis on Cu precipitation in a high Cu austenitic stainless steel. Mater Des. 2011;32(7):3980.CrossRefGoogle Scholar
  65. [65]
    Ren L, Yang K, Guo L, Chai HW. Preliminary study of anti-infective function of a copper-bearing stainless steel. Mater Sci Eng, C. 2012;32(5):1204.CrossRefGoogle Scholar
  66. [66]
    Ren L, Nan L, Yang K. Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel. Mater Des. 2011;32(4):2374.CrossRefGoogle Scholar
  67. [67]
    Ni HW, Zhang HS, Chen RS, Zhan WT, Huo KF, Zuo ZY. Antibacterial properties and corrosion resistance of AISI420 stainless steels implanted by silver and copper ions. Int J Miner Metall Mater. 2012;19(4):322.CrossRefGoogle Scholar
  68. [68]
    Zhu JC. Study on the Properties of Antibacterial Stainless Steel of Cupreous Layer Prepared by Plasma Metallization Technique. Guilin: Guilin University of Electronic Science and Technology; 2011. 56.Google Scholar
  69. [69]
    Shuai P, Yudong Z, Dongfei H, Hui L, Xiaobo Z, Xingfu L, Jing Z. Preparation of Ag–SiO2 antibacterial film based on stainless steel by sol–gel method and characterization of structure and properties. J Beijing Univ Sci Technol. 2011;33(5):575.Google Scholar
  70. [70]
    Weihu Y, Yubao L, Lan W, Anchun M, Jidong L, Lirong M. Preparation of antimicrobial stainless steels at room temperature. Funct Mater. 2006;37(3):408.Google Scholar
  71. [71]
    Nan L, Liu YQ, Yang WC, Xu H, Li Y, Lu MQ, Yang K. Study on antibacterial properties of copper-containing antibacterial stainless steels. Acta Metall Sin. 2007;43(10):1065.Google Scholar
  72. [72]
    Yang K, Lu MQ. Antibacterial properties of an austenitic antibacterial stainless steel and its security for human body. J Mater Sci Technol. 2007;23(3):333.CrossRefGoogle Scholar
  73. [73]
    Liu YQ, Nan L, Chen DM, Yang K. Study of a Cu-containing martensitic antibacterial stainless steel. Rare Metal Mater Eng. 2008;37(8):1380.Google Scholar
  74. [74]
    Chai H, Guo L, Wang X, Fu Y, Guan J, Tan L, Ren L, Yang K. Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo. J Mater Sci-Mater Med. 2011;22(11):2525.CrossRefGoogle Scholar
  75. [75]
    Sun D, Xu D, Yang C, Shahzad MB, Sun Z, Xia J, Zhao J, Gu T, Yang K, Wang G. An investigation of the antibacterial ability and cytotoxicity of a novel Cu-bearing 317L stainless steel. Sci Rep. 2016;6:29244.CrossRefGoogle Scholar
  76. [76]
    Nan L, Cheng JL, Yang K. Antibacterial behavior of a Cu-bearing type 200 stainless steel. J Mater Sci Technol. 2012;28(11):1067.CrossRefGoogle Scholar
  77. [77]
    Nan L, Yang K. Effect of Cu addition on antibacterial property of type 200 stainless steel. Mater Technol. 2016;31(1):44.CrossRefGoogle Scholar
  78. [78]
    Li M, Nan L, Xu D, Ren G, Yang K. Antibacterial performance of a Cu-bearing stainless steel against microorganisms in tap water. J Mater Sci Technol. 2015;31(3):243.CrossRefGoogle Scholar
  79. [79]
    Nan L, Ren G, Wang D, Yang K. Antibacterial performance of Cu-bearing stainless steel against Staphylococcus aureus and Pseudomonas aeruginosa in whole milk. J Mater Sci Technol. 2016;32(5):445.CrossRefGoogle Scholar
  80. [80]
    Wang S, Yang C, Shen M, Yang K. Effect of aging on antibacterial performance of Cu-bearing martensitic stainless steel. Mater Technol. 2014;29(5):257.CrossRefGoogle Scholar
  81. [81]
    Wang S, Yang CG, Xu D. Effect of heat treatment on antibacterial performance of 3Cr13MoCu martensitic stainless steel. Acta Metall. 2014;50:1453.Google Scholar
  82. [82]
    Wang S, Yang K, Shen M, Yang C. Effect of Cu content on antibacterial activity of 17-4 PH stainless steel. Mater Technol. 2015;30(Sup6):B115.CrossRefGoogle Scholar
  83. [83]
    Lou Y, Lin L, Xu D, Zhao S, Yang C, Liu J, Zhao Y, Gu T, Yang K. Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater. Int Biodeterior Biodegradation. 2016;110:199.CrossRefGoogle Scholar
  84. [84]
    Nan L, Yang WC, Liu YQ, Xu H, Li Y, Lu MQ, Yang K. Antibacterial mechanism of copper-bearing antibacterial stainless steel against E. coli. Mater Sci Technol. 2008;24(2):197 (English version).Google Scholar
  85. [85]
    Xiang HL, Fan JC, Liu D, Gu X. Antibacterial aging treatment on the microstructure and mechanical properties of Cu containing duplex stainless steel—II. The influence of corrosion and antibacterial properties. J Metal. 2012;48(9):1089.Google Scholar
  86. [86]
    Xia J, Yang C, Xu D, Sun D, Nan L, Sun Z, Li Q, Gu T, Yang K. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm. Biofouling. 2015;31(6):481.CrossRefGoogle Scholar
  87. [87]
    Dong H, Chen S. Technology innovations on high quality special steel products. Baosteel Tech Res. 2010;2010(s1):87.Google Scholar
  88. [88]
    Ren L, Wong HM, Yan CH, Yeung KW, Yang K. Osteogenic ability of Cu-bearing stainless steel. J Biomed Mater Res B Appl Biomater. 2015;103(7):1433.CrossRefGoogle Scholar
  89. [89]
    Ren L, Xu L, Feng J, Zhang Y, Yang K. In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis. J Mater Sci - Mater Med. 2012;23(5):1235.CrossRefGoogle Scholar
  90. [90]
    Zhao J, Ren L, Zhang B, Cao Z, Yang K. In vitro study on infectious ureteral encrustation resistance of Cu-bearing stainless steel. Mater Sci Technol. 2017;33(12):1604.CrossRefGoogle Scholar
  91. [91]
    Zhao J, Ren L, Liu M, Xi T, Zhang B, Yang K. Anti-fibrotic function of Cu-bearing stainless steel for reducing recurrence of urethral stricture after stent implantation. J Biomed Mater Res B Appl Biomater. 2018;106(5):2019.CrossRefGoogle Scholar
  92. [92]
    Noort RV. Titanium: the implant material of today. J Mater Sci. 1987;22(11):3801.CrossRefGoogle Scholar
  93. [93]
    Fengjuan Z, Ying S, Fuping W. Research status of surface activation of medical titanium alloys. Metal Heat Treat. 2009;34(2):106.Google Scholar
  94. [94]
    Wu YF, He L, Guo W. Research and application of medical titanium alloys. Prog Titan Ind. 2015;3(1):1.Google Scholar
  95. [95]
    Kikuchi M, Takada Y, Kiyosue S, Yoda M, Woldu M, Cai Z, Okuno O, Okabe T. Mechanical properties and microstructures of cast Ti–Cu alloys. Dent Mater. 2003;19(3):174.CrossRefGoogle Scholar
  96. [96]
    Murray JL. The Cu–Ti (copper–titanium) system. Bull Alloy Phase Diagr. 1983;4(1):81.CrossRefGoogle Scholar
  97. [97]
    Schuyler DR. Investment casting of low-melting titanium alloys. Vac Metall. 1977;6:475.Google Scholar
  98. [98]
    Okuno O, Shimizu A, Miura I. Fundamental study on titanium alloys for dental casting. J Jpn Soc Dent Mater Devices. 1985;4:708.Google Scholar
  99. [99]
    Bomberger H. Low melting hypereutectoid titanium-copper alloys. In: Titanium ‘80, Science and Technology: Proceedings of the Fourth International Conference on Titanium, Kyoto; 1980, 10.Google Scholar
  100. [100]
    Gerhard W, Boyer RR, Collings EW. Materials Properties Handbook: Titanium Alloys. Ohio: The Materials Information Society; 1993. 195.Google Scholar
  101. [101]
    Holden FC, Watts AA, Ogden HR, Jaffee RI. Heat treatment and mechanical properties of Ti–Cu alloys. J Iron Steel Res. 1955;7(1):117.Google Scholar
  102. [102]
    Kikuchi M, Takada Y, Kiyosue S, Yoda M, Woldu M, Cai Z, Okuno O, Okabe T. Grindability of cast Ti–Cu alloys. Dent Mater. 2003;19(5):375.CrossRefGoogle Scholar
  103. [103]
    Takahashi M, Kikuchi M, Takada Y, Okuno O. Mechanical properties and microstructures of dental cast Ti–Ag and Ti–Cu alloys. Dent Mater J. 2002;21(3):270.CrossRefGoogle Scholar
  104. [104]
    Zhang XP, Yu SR, Xia LJ, He ZM. The present status of Ti and Ti alloys in dentistry. Rare Metal Mater Eng. 2002;31(4):246.Google Scholar
  105. [105]
    Takada Y, Nakajima H, Okuno O, Okabe T. Microstructure and corrosion behavior of binary titanium alloys with beta-stabilizing elements. Dent Mater J. 2001;20(1):34.CrossRefGoogle Scholar
  106. [106]
    Pina VG, Amigó V, Muñoz AI. Microstructural, electrochemical and tribo-electrochemical characterization of titanium–copper biomedical alloys. Corros Sci. 2016;109:115.CrossRefGoogle Scholar
  107. [107]
    Bao MM, Liu Y, Wang XY, Yang L, Li SY, Ren J, Qin GW, Zhang EL. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti–3Cu alloy by heat treatment. Bioactive Mater. 2018;3(1):28.CrossRefGoogle Scholar
  108. [108]
    Osório WR, Freire CM, Caram R, Garcia A. The role of Cu-based intermetallics on the pitting corrosion behavior of Sn–Cu, Ti–Cu and Al–Cu alloys. Electrochim Acta. 2012;77(9):189.CrossRefGoogle Scholar
  109. [109]
    Osório WR, Cremasco A, Andrade PN, Garcia A, Caram R. Electrochemical behavior of centrifuged cast and heat treated Ti–Cu alloys for medical applications. Electrochim Acta. 2010;55(3):759.CrossRefGoogle Scholar
  110. [110]
    Gu JL, Shao Y, Zhao SF, Lu SY, Yang GN, Chen SQ, Yao KF. Effects of Cu addition on the glass forming ability and corrosion resistance of Ti–Zr–Be–Ni alloys. J Alloy Compd. 2017;725:573.CrossRefGoogle Scholar
  111. [111]
    Zhang EL, Wang XY, Chen M, Hou B. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti–Cu alloys for biomedical application. Mater Sci Eng, C. 2016;69:1210.CrossRefGoogle Scholar
  112. [112]
    Ren L, Ma Z, Li M, Zhang Y, Liu W, Liao Z, Yang K. Antibacterial properties of Ti–6Al–4V–xCu alloys. J Mater Sci Technol. 2014;30(7):699.CrossRefGoogle Scholar
  113. [113]
    Zhang EL, Li F, Wang H, Liu J, Wang C, Li M, Yang K. A new antibacterial titanium–copper sintered alloy: preparation and antibacterial property. Mater Sci Eng C Mater Biol Appl. 2013;33(7):4280.CrossRefGoogle Scholar
  114. [114]
    Wang S, Ma Z, Liao ZH, Song J, Yang K, Liu WQ. Study on improved tribological properties by alloying copper to CP–Ti and Ti–6Al–4V alloy. Mater Sci Eng, C. 2015;57:123.CrossRefGoogle Scholar
  115. [115]
    Li S. Study on preparation, microstructure and antibacterial properties of antibacterial Ti–Cu alloy. Shenyang: Northeastern University; 2016. 45.Google Scholar
  116. [116]
    Zhang EL, Li S, Ren J, Zhang L, Han Y. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti–Cu sintered alloys. Mater Sci Eng, C. 2016;69:760.CrossRefGoogle Scholar
  117. [117]
    Shirai T, Tsuchiya H, Shimizu T, Ohtani K, Zen Y, Tomita K. Prevention of pin tract infection with titanium–copper alloys. J Biomed Mater Res B Appl Biomater. 2009;91B(1):373.CrossRefGoogle Scholar
  118. [118]
    Liu J, Li F, Liu C, Wang H, Ren B, Yang K, Zhang EL. Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys. Mater Sci Eng, C. 2014;35:392.CrossRefGoogle Scholar
  119. [119]
    Liu R, Memarzadeh K, Chang B, Zhang Y, Ma Z, Allaker RP, Ren L, Yang K. Antibacterial effect of copper bearing titanium alloy (Ti–Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci Rep. 2016;6:29985.CrossRefGoogle Scholar
  120. [120]
    Bai B, Zhang EL, Liu J, Zhu J. The anti-bacterial activity of titanium–copper sintered alloy against Porphyromonas gingivalis in vitro. Dent Mater J. 2016;35(4):659.CrossRefGoogle Scholar
  121. [121]
    Zhang EL, Li F, Wang H, Liu J, Wang C, Li M, Yang K. A new antibacterial titanium–copper sintered alloy: preparation and antibacterial property. Mater Sci Eng, C. 2013;33(7):4280.CrossRefGoogle Scholar
  122. [122]
    Liu J, Zhang X, Wang H, Li F, Li M, Yang K, Zhang EL. The antibacterial properties and biocompatibility of a Ti–Cu sintered alloy for biomedical application. Biomed Mater. 2014;9(2):025013.CrossRefGoogle Scholar
  123. [123]
    Ma Z, Ren L, Liu R, Yang K, Zhang Y, Liao Z, Liu W, Qi M, Misra R. Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti–6Al–4V–5Cu alloy. J Mater Sci Technol. 2015;31(7):723.CrossRefGoogle Scholar
  124. [124]
    Ma Z, Yao M, Liu R, Yang K, Ren L, Zhang Y, Liao Z, Liu W, Qi M. Study on antibacterial activity and cytocompatibility of Ti–6Al–4V–5Cu alloy. Mater Technol. 2015;30(sup6):B80.CrossRefGoogle Scholar
  125. [125]
    Ma Z, Li M, Liu R, Ren L, Zhang Y, Pan H, Zhao Y, Yang K. In vitro study on an antibacterial Ti–5Cu alloy for medical application. J Mater Sci - Mater Med. 2016;27(5):91.CrossRefGoogle Scholar
  126. [126]
    Liu J, Li F, Liu C, Wang H, Ren B, Yang K, Zhang EL. Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys. Mater Sci Eng C Mater Biol Appl. 2014;35(1):392.CrossRefGoogle Scholar
  127. [127]
    Wang XY, Dong H, Liu J, Qin GW, Zhang EL, Chen DF. In vivo antibacterial property of Ti–Cu sintered alloy implant. Mater Sci Eng, C. 2019.  https://doi.org/10.1016/j.msec.2019.02.084.CrossRefGoogle Scholar
  128. [128]
    Zhang EL, Zheng L, Liu J, Bai B, Liu C. Influence of Cu content on the cell biocompatibility of Ti–Cu sintered alloys. Mater Sci Eng, C. 2015;46:148.CrossRefGoogle Scholar
  129. [129]
    Li Y, Zhang YT, He J, Ma K, Wang MY, Li SY, Deng CF, Zhang EL, Zhao BH. Effects of different copper contents on the adhesion and migration of osteoblasts. Chin J Pract Stomatol. 2017;10(6):354.Google Scholar
  130. [130]
    Zhang EL, Zhang LL, Liu J, Bai B, Liu C. Influence of Cu content on the cell biocompatibility of Ti–Cu sintered alloys. Mater Sci Eng, C. 2015;46(8):148.CrossRefGoogle Scholar
  131. [131]
    Zadorozhnyy VY, Shi X, Kozak DS, Wada T, Wang JQ, Kato H, Louzguine-Luzgin DV. Electrochemical behavior and biocompatibility of Ti–Fe–Cu alloy with high strength and ductility. J Alloy Compd. 2017;707:291.CrossRefGoogle Scholar
  132. [132]
    Luo J, Guo S, Lu Y, Xu X, Zhao C, Wu S, Lin J. Cytocompatibility of Cu-bearing Ti6Al4V alloys manufactured by selective laser melting. Mater Charact. 2018;143:127.CrossRefGoogle Scholar
  133. [133]
    Bai B, Zhang EL, Dong H, Liu J. Biocompatibility of antibacterial Ti–Cu sintered alloy: in vivo bone response. J Mater Sci - Mater Med. 2015;26(12):265.CrossRefGoogle Scholar
  134. [134]
    Hao SM. Magnesium alloying and alloy phase diagram. J Mater Metall. 2002;1(3):166.Google Scholar
  135. [135]
    Chen JX, Peng W, Zhu L, Tan LL, Etim IP, Wang XJ, Yang K. Effect of copper content on the corrosion behaviors and antibacterial properties of binary Mg–Cu alloys. Mater Technol. 2018;33(2):1.CrossRefGoogle Scholar
  136. [136]
    Wu CB, Wang QD, Zhao P. Influence of Fe, Ni and Cu on corrosion performance of AXJ530 magnesium. Spec Cast Nonferrous Alloys. 2006;26(11):736.Google Scholar
  137. [137]
    Chen L. Design of New Biodegradable Magnesium Alloy Material for Bone Implantation and Study on its Biomedical Functions. Nanjing: Nanjing University of Science and Technology; 2016. 5.Google Scholar
  138. [138]
    Chen SQ, Dong XP, Xiong XQ, Ma R, Fan ZT. Effects of Cu on microstructure, mechanical properties and damping capacity of as-cast Mg–3%Ni alloy. Adv Mater Res. 2012;463–464:52.CrossRefGoogle Scholar
  139. [139]
    Chen S, Dong X, Ma R, Zhang L, Wang H, Fan Z. Effects of Cu on microstructure, mechanical properties and damping capacity of high damping Mg–1%Mn based alloy. Mater Sci Eng, A. 2012;551(31):87.CrossRefGoogle Scholar
  140. [140]
    Li Y, Liu L, Wan P, Zhai Z, Mao Z, Ouyang Z, Yu D, Sun Q, Tan L, Ren L. Biodegradable Mg–Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: in vitro and in vivo evaluations. Biomaterials. 2016;106:250.CrossRefGoogle Scholar
  141. [141]
    Liu C, Fu X, Pan H, Wan P, Wang L, Tan L, Ke W, Zhou Y, Yang K, Chu PK. Biodegradable Mg–Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects. Sci Rep. 2016;6:27374.CrossRefGoogle Scholar
  142. [142]
    Hodgson AWE, Kurz S, Virtanen S, Fervel V, Olsson COA, Mischler S. Passive and transpassive behaviour of CoCrMo in simulated biological solutions. Electrochim Acta. 2004;49(13):2167.CrossRefGoogle Scholar
  143. [143]
    Reclaru L, Lüthy H, Eschler PY, Blatter A, Susz C. Corrosion behaviour of cobalt–chromium dental alloys doped with precious metals. Biomaterials. 2005;26(21):4358.CrossRefGoogle Scholar
  144. [144]
    Zhang ZY, Lu XC, Han BL, Luo JB. Rare earth effect on microstructure, mechanical and tribological properties of CoCrW coatings. Mater Sci Eng, A. 2007;444(1–2):92.CrossRefGoogle Scholar
  145. [145]
    Cao CD, Görler GP, Herlach DM, Wei B. Liquid–liquid phase separation in undercooled Co–Cu alloys. Mater Sci Eng, A. 2002;325(1–2):503.CrossRefGoogle Scholar
  146. [146]
    Wang S, Yang C, Ren L, Shen M, Yang K. Study on antibacterial performance of Cu-bearing cobalt-based alloy. Mater Lett. 2014;129(32):88.CrossRefGoogle Scholar
  147. [147]
    Liu C. Study on microstructure and antibacterial properties of CoCrMoCu alloy. Jiamusi: Jiamusi University; 2015. 35.Google Scholar
  148. [148]
    Lu Y, Zhao C, Ren L, Guo S, Gan Y, Yang C, Wu S, Lin J, Huang T, Yang K. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3wt% Cu addition. Mater Sci Eng, C. 2016;63:37.CrossRefGoogle Scholar
  149. [149]
    Zhang EL, Liu C. A new antibacterial Co–Cr–Mo–Cu alloy: preparation, biocorrosion, mechanical and antibacterial property. Mater Sci Eng, C. 2016;69:134.CrossRefGoogle Scholar
  150. [150]
    Zhang EL, Ge Y, Qin G. Hot deformation behavior of an antibacterial Co–29Cr–6Mo–1.8 Cu alloy and its effect on mechanical property and corrosion resistance. J Mater Sci Technol. 2018;34(3):523.CrossRefGoogle Scholar
  151. [151]
    Li WG. The corrosion behavior of Co–Cu alloy in biological environment and the preparation of drug loaded PLGA coating. Shenyang: Northeastern University; 2017. 35.Google Scholar
  152. [152]
    Yin Z, Ren YB, Zhan DS. Effects of copper content on the antibacterial performance and corrosion resistance of CoCrMoCu alloy. West China J Stomatol. 2018;36(2):178.Google Scholar
  153. [153]
    Lu Y, Ren L, Xu X, Yang Y, Wu S, Luo J, Yang M, Liu L, Zhuang D, Yang K. Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting. J Mech Behav Biomed Mater. 2018;81:130.CrossRefGoogle Scholar
  154. [154]
    Hu X, Neoh KG, Zhang J, Kang ET. Bacterial and osteoblast behavior on titanium, cobalt–chromium alloy and stainless steel treated with alkali and heat: a comparative study for potential orthopedic applications. J Colloid Interface Sci. 2014;417(29):410.CrossRefGoogle Scholar
  155. [155]
    Totea G, Ionita D, Demetrescu I. Influence of doping ions on the antibacterial activity of biomimetic coating on CoCrMo alloy. J Bionic Eng. 2015;12(4):583.CrossRefGoogle Scholar
  156. [156]
    Ren L, Memarzadeh K, Zhang S, Sun Z, Yang C, Ren G, Allaker RP, Yang K. A novel coping metal material CoCrCu alloy fabricated by selective laser melting with antimicrobial and antibiofilm properties. Mater Sci Eng, C. 2016;67:461.CrossRefGoogle Scholar
  157. [157]
    Jafari S, Raman RKS, Davies CHJ. Corrosion fatigue of a magnesium alloy in modified simulated body fluid. Eng Fract Mech. 2015;137:2.CrossRefGoogle Scholar
  158. [158]
    Gu XN, Zhou WR, Zheng YF, Cheng Y, Wei SC, Zhong SP, Xi TF, Chen LJ. Corrosion fatigue behaviors of two biomedical Mg alloys—AZ91D and WE43—in simulated body fluid. Acta Biomater. 2010;6(12):4605.CrossRefGoogle Scholar
  159. [159]
    Vojtěch D, Kubásek J, Serák J, Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7(9):3515.CrossRefGoogle Scholar
  160. [160]
    Bowen PK, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater. 2013;25(18):2577.CrossRefGoogle Scholar
  161. [161]
    Chen X, Yang D, Tian M, Long XM, Li AC. Effect of deformation heat treatment on microstructure and properties of Zn–Cu–Ti alloy. Spec Cast Nonferrous Alloys. 2015;35(6):669.Google Scholar
  162. [162]
    Tang Z, Huang H, Niu J, Zhang L, Zhang H, Pei J, Tan J, Yuan G. Design and characterizations of novel biodegradable Zn–Cu–Mg alloys for potential biodegradable implants. Mater Des. 2017;117:84.CrossRefGoogle Scholar
  163. [163]
    Chen ML, Guo JP, Dong LY, Jin SB, Tang LB. Corrosion resistance of ZA alloy. Chin J Nonferrous Metals. 1995;4:136.Google Scholar
  164. [164]
    Niu J, Tang Z, Hua H, Jia P, Hua Z, Yuan G, Ding W. Research on a Zn–Cu alloy as a biodegradable material for potential vascular stents application. Mater Sci Eng, C. 2016;69:407.CrossRefGoogle Scholar
  165. [165]
    Liu X, Sun J, Zhou F, Yang Y, Chang R, Qiu K, Pu Z, Li L, Zheng Y. Micro-alloying with Mn in Zn–Mg alloy for future biodegradable metals application. Mater Des. 2016;94:95.CrossRefGoogle Scholar
  166. [166]
    Kaya H, Çadırlı E, Ülgen A. Investigation of the effect of composition on microhardness and determination of thermo-physical properties in the Zn–Cu alloys. Mater Des. 2011;32(2):900.CrossRefGoogle Scholar
  167. [167]
    Osório WR, Brito C, Peixoto LC, Garcia A. Electrochemical behavior of Zn-rich Zn–Cu peritectic alloys affected by macrosegregation and microstructural array. Electrochim Acta. 2012;76(8):218.CrossRefGoogle Scholar
  168. [168]
    Hou Y, Jia G, Yue R, Chen C, Pei J, Zhang H, Huang H, Xiong M, Yuan G. Synthesis of biodegradable Zn-based scaffolds using NaCl templates: relationship between porosity, compressive properties and degradation behavior. Mater Charact. 2018;137:162.CrossRefGoogle Scholar
  169. [169]
    Tang Z, Niu J, Hua H, Hua Z, Jia P, Ou J, Yuan G. Potential biodegradable Zn–Cu binary alloys developed for cardiovascular implant applications. J Mech Behav Biomed Mater. 2017;72:182.CrossRefGoogle Scholar
  170. [170]
    Li HF, Xie XH, Zheng YF, Cong Y, Zhou FY, Qiu KJ, Wang X, Chen SH, Huang L, Tian L. Corrigendum: development of biodegradable Zn–1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci Rep. 2015;5:10719.CrossRefGoogle Scholar
  171. [171]
    Wang HT, Yang Z. In vitro evaluation of the feasibility of commercial Zn alloys as biodegradable metals. J Mater Sci Technol. 2016;32(9):909.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of MaterialsEducation Ministry of China, Northeastern UniversityShenyangChina
  2. 2.Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and TraumatologyBeijing Jishuitan HospitalBeijingChina

Personalised recommendations