Advertisement

Rare Metals

, Volume 38, Issue 5, pp 390–396 | Cite as

Controllable synthesis and tunable photocatalytic activity of TiO2 nanowires via alcohol-thermal method

  • Zheng-Xia Xu
  • An-Qi Wang
  • Yong-Fa ZhuEmail author
Article
  • 17 Downloads

Abstract

Titania nanowires (TiO2-NW) with tunable aspect ratios and morphologies were directly synthesized using a simple alcohol-thermal technique. Specifically, ethanol and acetic acid were used as solvents and lithium ion was used as the capping agent to promote the conversion of titanium butoxide into TiO2-NW. The morphologies and crystal phases of TiO2-NW were determined by the molar ratio of solvents and the content (mol%) of lithium ion. The band gap of TiO2-NW with pure anatase phase is slightly bigger than that of TiO2-NW with a mixture of anatase and rutile phases. All TiO2-NW could achieve effective decolorization of methyl blue (the decolorization rate is over 95%) after 35-min ultraviolet (UV) irradiation.

Graphical abstract

Keywords

Nanowires TiO2 Photocatalysis Degradation Photocurrent 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51408528) and the Natural Science Foundation of Hebei Province, China (No. E2014203089).

Supplementary material

12598_2019_1243_MOESM1_ESM.docx (2.2 mb)
Supplementary material 1 (DOCX 2251 kb)

References

  1. [1]
    Xia M, Zhang Q, Pan P, Zhong X, Long H, Tong X, Liu G. Enhanced surface photovoltaic properties of TiO2 nanowires doped by Ag nanoparticles. Mater Lett. 2015;160(Supplement C):544.CrossRefGoogle Scholar
  2. [2]
    Wang X, Li Z, Shi J, Yu Y. One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem Rev. 2014;114(19):9346.CrossRefGoogle Scholar
  3. [3]
    Zander Z, Yagloski R, DeCoste J, Zhang D, DeLacy BG. One-pot synthesis of high aspect ratio titanium dioxide nanorods using oxalic acid as a complexing agent. Mater Lett. 2016;163(Supplement C):39.CrossRefGoogle Scholar
  4. [4]
    Xu Z, Kan Y, Liu C. Aspect ratio control and photocatalytic properties analysis of anatase TiO2 nanoparticles. Mater Res Bull. 2018;107:80.CrossRefGoogle Scholar
  5. [5]
    Wang J, Wang C, Zhu S, Luo X, Li Z, Xu L. Benzohydroxamic acid photodegradation by prepared Ce modified TiO2. Chin J Rare Metals. 2018;42(4):393.Google Scholar
  6. [6]
    Wang J, Lou C, Chen X, Hu F, Yan B, Zhang M. Preparation and optical properties of inverse opal titanium dioxide. Chin J Rare Metals. 2018;42(8):850.Google Scholar
  7. [7]
    Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev. 2014;114(19):9385.CrossRefGoogle Scholar
  8. [8]
    Luan S, Qu D, An L, Jiang W, Gao X, Hua S, Miao X, Wen Y, Sun Z. Enhancing photocatalytic performance by constructing ultrafine TiO2 nanorods/g-C3N4 nanosheets heterojunction for water treatment. Sci Bull. 2018;63(11):683.CrossRefGoogle Scholar
  9. [9]
    Han B, Kim SJ, Hwang BM, Kim SB, Park KW. Single-crystalline rutile TiO2 nanowires for improved lithium ion intercalation properties. J Power Sources. 2013;222(Supplement C):225.CrossRefGoogle Scholar
  10. [10]
    Xu ZX, Yang JT, Liu K, Guo XQ. Shape evolution behavior of anatase titania nanocrystals via the Solvothermal method. Acta Phys Chim Sin. 2016;32(2):581.Google Scholar
  11. [11]
    Wu HB, Chen JS, Lou XW, Hng HH. Asymmetric anatase TiO2 nanocrystals with exposed high-index facets and their excellent lithium storage properties. Nanoscale. 2011;3(10):4082.CrossRefGoogle Scholar
  12. [12]
    Dai L, Sow CH, Lim CT, Cheong WCD, Tan VBC. Numerical investigations into the tensile behavior of TiO2 nanowires: structural deformation, mechanical properties, and size effects. Nano Lett. 2009;9(2):576.CrossRefGoogle Scholar
  13. [13]
    Sadeghzadeh Attar A, Hassani Z. Fabrication and growth mechanism of single-crystalline rutile TiO2 nanowires by liquid-phase deposition process in a porous alumina template. J Mater Sci Technol. 2015;31(8):828.CrossRefGoogle Scholar
  14. [14]
    Yuan L, Meng S, Zhou Y, Yue Z. Controlled synthesis of anatase TiO2 nanotube and nanowire arrays via AAO template-based hydrolysis. J Mater Chem A. 2013;1(7):2552.CrossRefGoogle Scholar
  15. [15]
    Hwang YJ, Hahn C, Liu B, Yang P. Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating. ACS Nano. 2012;6(6):5060.CrossRefGoogle Scholar
  16. [16]
    Cheng Z, Wang W, Yang L, Xu Z, Ji Z, Huang S. Preparation of La–TiO2 and photocatalytic degradation of petrochemical secondary effluent. Chin J Rare Metals. 2018;42(9):950.Google Scholar
  17. [17]
    Kang SH, Choi SH, Kang MS, Kim JY, Kim HS, Hyeon T, Sung YE. Nanorod-based dye-sensitized solar cells with improved charge collection efficiency. Adv Mater. 2008;20(1):54.CrossRefGoogle Scholar
  18. [18]
    Dong S, Ding X, Guo T, Yue X, Han X, Sun J. Self-assembled hollow sphere shaped Bi2WO6/RGO composites for efficient sunlight-driven photocatalytic degradation of organic pollutants. Chem Eng J. 2017;316:778.CrossRefGoogle Scholar
  19. [19]
    Tao RH, Wu JM, Xue HX, Song XM, Pan X, Fang XQ, Fang XD, Dai SY. A novel approach to titania nanowire arrays as photoanodes of back-illuminated dye-sensitized solar cells. J Power Sources. 2010;195(9):2989.CrossRefGoogle Scholar
  20. [20]
    Guoxin H, Xu Z. Monodisperse iron oxide nanoparticle-reduced graphene oxide composites formed by self-assembly in aqueous phase. Fuller Nanotub Carbon Nanostruct. 2015;23(4):283.CrossRefGoogle Scholar
  21. [21]
    Li X, Zhang H, Huang J, Luo J, Feng Z, Wang X. Folded nano-porous graphene-like carbon nitride with significantly improved visible-light photocatalytic activity for dye degradation. Ceram Int. 2017;43(17):15785.CrossRefGoogle Scholar
  22. [22]
    Wu HB, Hng HH, Lou XW. Direct synthesis of anatase TiO2 nanowires with enhanced photocatalytic activity. Adv Mater. 2012;24(19):2567.CrossRefGoogle Scholar
  23. [23]
    Gu X, Wang B, Zhang Q, Zhao Y, Qiang Y. Preparation of ultrathin TiO2 single-crystal nanowires for high performance dye sensitized solar cells. J Mater Sci Mater Electron. 2013;24(2):520.CrossRefGoogle Scholar
  24. [24]
    Tang HL, Ren Y, Wei SH, Liu G, Xu XX. Preparation of 3D ordered mesoporous anatase TiO2 and their photocatalytic activity. Rare Metals. 2019;1:6.  https://doi.org/10.1007/s12598-019-01211-8.Google Scholar
  25. [25]
    Kim CS, Moon BK, Park JH, Tae Chung S, Son SM. Synthesis of nanocrystalline TiO2 in toluene by a solvothermal route. J Cryst Growth. 2003;254(3):405.CrossRefGoogle Scholar
  26. [26]
    Liu X, Zhang F, Huang R, Pan C, Zhu J. Capping modes in PVP-directed silver nanocrystal growth: multi-twinned nanorods versus single-crystalline nano-hexapods. Cryst Growth Des. 2008;8(6):1916.CrossRefGoogle Scholar
  27. [27]
    Jiang XC, Xiong SX, Tian ZA, Chen CY, Chen WM, Yu AB. Twinned structure and growth of V-shaped silver nanowires generated by a polyol–thermal approach. J Phys Chem C. 2011;115(5):1800.CrossRefGoogle Scholar
  28. [28]
    Spurr RA, Myers H. Quantitative analysis of anatase–rutile mixtures with an X-ray diffractometer. Anal Chem. 1957;29(5):760.CrossRefGoogle Scholar
  29. [29]
    Kumar PS, Nizar SAS, Sundaramurthy J, Ragupathy P, Thavasi V, Mhaisalkar SG, Ramakrishna S. Tunable hierarchical TiO2 nanostructures by controlled annealing of electrospun fibers: formation mechanism, morphology, crystallographic phase and photoelectrochemical performance analysis. J Mater Chem. 2011;21(26):9784.CrossRefGoogle Scholar
  30. [30]
    Li H, Shen X, Liu Y, Wang L, Lei J, Zhang J. Facile phase control for hydrothermal synthesis of anatase–rutile TiO2 with enhanced photocatalytic activity. J Alloys Compd. 2015;646:380.CrossRefGoogle Scholar
  31. [31]
    Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Catlow CRA, Powell MJ, Palgrave RG, Parkin IP, Watson GW, Keal TW, Sherwood P, Walsh A, Sokol AA. Band alignment of rutile and anatase TiO2. Nat Mater. 2013;12(9):798.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Civil Engineering and MechanicsYanshan UniversityQinhuangdaoChina
  2. 2.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations