Rare Metals

pp 1–8 | Cite as

Monolith free-standing plasmonic PAN/Ag/AgX (X = Br, I) nanofiber mat as easily recoverable visible-light-driven photocatalyst

  • Meng-Mo Ping
  • Shu-Jun Qiu
  • Gui-Juan Wei
  • Jun-Xue Liu
  • Zhao-Jie WangEmail author
  • Shu-Tao Wang
  • Chang-Hua AnEmail author


Most efficient visible-light-responsive photocatalysts are in the form of powder, leading to the tedious separation from the reaction media. Herein, we developed a versatile method for the general synthesis of free-standing polyacrylonitrile (PAN)/Ag/AgX (X = Br, I) nanofiber mats, where fibrous PAN/Ag precursor was firstly prepared via an electroless plating strategy, followed by a direct elemental halogenation with Br2/H2O or I2/ethanol solution. The as-obtained PAN/Ag/AgX nanofiber mats exhibit exceptional photocatalytic activity toward degradation of organic pollutants. Furthermore, the flexibility enables it to be easily recovered after the reaction was completed. This work provides new insights into the fabrication of membrane-based photocatalysts on a large scale.


Free-standing PAN/Ag/AgX (X = Br, I) Nanofiber Photocatalysts 



This work was financially supported by the Key Project of Natural Science Foundation of Tianjin (No. 18JCZDJC97200).

Supplementary material

12598_2019_1242_MOESM1_ESM.docx (693 kb)
Supplementary material 1 (DOCX 693 kb)


  1. [1]
    Zeng C, Hu Y, Guo YX, Zhang TR, Dong F, Zhang YH, Huang HW. Facile in situ self-sacrifice approach to ternary hierarchical architecture Ag/AgX (X = Cl, Br, I)/AgIO3 distinctively promoting visible-light photocatalysis with composition-dependent mechanism. ACS Sustain Chem Eng. 2016;4(6):3305.CrossRefGoogle Scholar
  2. [2]
    Hu XF, Wu SY, Li GL, Xu YQ, Ding CC, Zhang ZH. Studies of the local lattice distortions for the various rhombic Ru3+ centres in AgX (X = Cl and Br). Polyhedron. 2016;117:14.CrossRefGoogle Scholar
  3. [3]
    He KF, Zhu K, Chen WP. Photocatalytic behavior of PdCl2-modified nanostructured AgI/TiO2 photocatalyst. Rare Met. 2011;30(S1):131.CrossRefGoogle Scholar
  4. [4]
    Xia DH, Hu LL, Tan XQ, He C, Pan WQ, Yang TS, Huang YL, Shu D. Immobilization of self-stabilized plasmonic Ag–AgI on mesoporous Al2O3 for efficient purification of industrial waste gas with indoor LED illumination. Appl Catal B Environ. 2016;185(15):295.CrossRefGoogle Scholar
  5. [5]
    Xu YX, Lin DF, Liu XP, Luo YG, Xue H, Huang BQ, Qian QR, Chen QH. TiO2 hollow nanofibers grafted Ag/AgCl with more AgCl{111} facet for enhanced photocatalytic activity. Mater Lett. 2018;215(15):250.CrossRefGoogle Scholar
  6. [6]
    Ong WJ, Putri LK, Tan LL, Chai SP, Yong ST. Heterostructured AgX/g–C3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition–precipitation approach: emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide. Appl Catal B Environ. 2016;180:530.CrossRefGoogle Scholar
  7. [7]
    Wang P, Huang BB, Qin XY, Zhang XY, Dai Y, Wei JY, Whangbo MH. Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed. 2008;47(41):7931.CrossRefGoogle Scholar
  8. [8]
    Wang P, Huang BB, Zhang QQ, Zhang XY, Qin XY, Dai Y, Zhan J, Yu JX, Liu HX, Lou ZZ. Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. Chem Eur J. 2009;15(8):1821.CrossRefGoogle Scholar
  9. [9]
    An CH, Peng S, Sun YG. Facile synthesis of sunlight-driven AgCl: Ag plasmonic nanophotocatalyst. Adv Mater. 2010;22(23):2570.CrossRefGoogle Scholar
  10. [10]
    Wang P, Huang BB, Lou ZZ, Zhang XY, Qin XY, Dai Y, Zheng ZK, Wang XN. Synthesis of highly efficient Ag@AgCl plasmonic photocatalysts with various structures. Chem Eur J. 2010;16(2):538.CrossRefGoogle Scholar
  11. [11]
    Bi YP, Ye JH. Direct conversion of commercial silver foils into high aspect ratio AgBr nanowires with enhanced photocatalytic properties. Chem Eur J. 2010;16(34):10327.CrossRefGoogle Scholar
  12. [12]
    Yu JG, Xiong JF, Cheng B, Liu SW. Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl Catal B Environ. 2005;60(3–4):211.CrossRefGoogle Scholar
  13. [13]
    Liu R, Wang P, Wang XF, Yu HG, Yu JG. UV- and visible-light photocatalytic activity of simultaneously deposited and doped Ag/Ag(I)–TiO2 photocatalyst. J Phys Chem C. 2012;116(33):17721.CrossRefGoogle Scholar
  14. [14]
    Zhao ZG, Miyauchi M. Nanoporous-walled tungsten oxide nanotubes as highly active visible-light-driven photocatalysts. Angew Chem Int Ed. 2008;47(37):7051.CrossRefGoogle Scholar
  15. [15]
    Wang P, Wang J, Wang XF, Yu HG, Yu JG, Lei M, Wang YG. One-step synthesis of easy-recycling TiO2–rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Appl Catal B Environ. 2013;132–133:452.CrossRefGoogle Scholar
  16. [16]
    Bi YP, Ye JH. Heteroepitaxial growth of platinum nanocrystals on AgCl nanotubes via galvanic replacement reaction. Chem Commun. 2010;46:1532.CrossRefGoogle Scholar
  17. [17]
    Lou ZZ, Huang BB, Wang P, Wang ZY, Qin XY, Zhang XY, Cheng HF, Zheng ZK, Dai Y. The synthesis of the near-spherical AgCl crystal for visible light photocatalytic applications. Dalton Trans. 2011;40(16):4104.CrossRefGoogle Scholar
  18. [18]
    Lou ZZ, Huang BB, Qin XY, Zhang XY, Cheng HF, Liu YY, Wang SY, Wang JP, Da Y. One-step synthesis of AgCl concave cubes by preferential overgrowth along <111> and <110> directions. Chem Commun. 2012;48(29):3488.CrossRefGoogle Scholar
  19. [19]
    Lou ZZ, Huang BB, Ma XC, Zhang XY, Qin XY, Wang ZY, Dai Y, Liu YY. A 3D AgCl hierarchical superstructure synthesized by a wet chemical oxidation method. Chem Eur J. 2012;18(50):16090.CrossRefGoogle Scholar
  20. [20]
    Ma B, Guo JF, Dai WL, Fan KN. Highly stable and efficient Ag/AgCl core–shell sphere: controllable synthesis, characterization, and photocatalytic application. Appl Catal B Environ. 2013;130–131:257.CrossRefGoogle Scholar
  21. [21]
    He TS, Zhou ZF, Xu WB, Ren FM, Ma HH, Wang J. Preparation and photocatalysis of TiO2–fluoropolymer electrospun fiber nanocomposites. Polymer. 2009;50(13):3031.CrossRefGoogle Scholar
  22. [22]
    Lee JA, Krogman KC, Ma ML, Hill RM, Hammond PT, Rutledge GC. Highly reactive multilayer-assembled TiO2 coating on electrospun polymer nanofibers. Adv Mater. 2009;21:1252.CrossRefGoogle Scholar
  23. [23]
    Xiao D, Geng GW, Chen PL, Li TS, Liu MH. Sheet-like and truncated-dodecahedron-like AgI structures via a surfactant-assisted protocol and their morphology-dependent photocatalytic performance. Phys Chem Chem Phys. 2017;19(1):837.CrossRefGoogle Scholar
  24. [24]
    Yu CL, Wei LF, Chen JC, Zhou WQ, Fan QZ, Yu J. Novel AgCl/Ag2CO3 heterostructured photocatalysts with enhanced photocatalytic performance. Rare Met. 2015;35(6):475.CrossRefGoogle Scholar
  25. [25]
    Ye LQ, Liu JY, Gong CQ, Tian LH, Peng TY, Zan L. Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: surface plasmon resonance and Z-scheme bridge. ACS Catal. 2012;2(8):1677.CrossRefGoogle Scholar
  26. [26]
    Liu ZY, Sun DD, Guo P, Leckie JO. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett. 2007;7(4):1081.CrossRefGoogle Scholar
  27. [27]
    Li YY, Ding Y. Porous AgCl/Ag nanocomposites with enhanced visible light photocatalytic properties. J Phys Chem C. 2010;114(7):3175.CrossRefGoogle Scholar
  28. [28]
    Liang XZ, Wang P, Li MM, Zhang QQ, Wang ZY, Dai Y, Zhang XY, Liu YY, Whangbo MH, Huang BB. Adsorption of gaseous ethylene via induced polarization on plasmonic photocatalyst Ag/AgCl/TiO2 and subsequent photodegradation. Appl Catal B. 2018;220:356.CrossRefGoogle Scholar
  29. [29]
    Li QY, Chang SZ, Wu D, Bao SY, Zeng CY, Nasir M, Tian BZ, Zhang JL. Synthesis of cubic Ag@AgCl and Ag@AgBr plasmonic photocatalysts and comparison of their photocatalytic activity for degradation of methyl orange and 2,4-dichlorophenol. Res Chem Intermed. 2018;44(8):4651.CrossRefGoogle Scholar
  30. [30]
    Maeda K, Domen K. Solid solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light. Chem Mater. 2010;22(3):612.CrossRefGoogle Scholar
  31. [31]
    Bao N, Feng X, Yang Z, Shen LM, Lu XH. Highly efficient liquid-phase photooxidation of an azo dye methyl orange over novel nanostructured porous titanate-based fiber of self-supported radially aligned H2Ti8O17·1.5H2O nanorods. Environ Sci Technol. 2004;38(9):2729.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical EngineeringTianjin University of TechnologyTianjinChina
  2. 2.School of Materials Science and EngineeringChina University of PetroleumQingdaoChina

Personalised recommendations