Rare Metals

, Volume 38, Issue 5, pp 437–445 | Cite as

Synergetic effect of BiOCl/Bi12O17Cl2 and MoS2: in situ DRIFTS investigation on photocatalytic NO oxidation pathway

  • Wen-Dong ZhangEmail author
  • Xing-An Dong
  • Yi Liang
  • Rui Liu
  • Yan-Juan Sun
  • Fan DongEmail author


The BiOCl/Bi12O17Cl2@MoS2 (BOC-MS) composites were successfully synthesized by a facile method at room temperature. The physicochemical properties of the as-obtained samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet–visible diffuse reflection spectra (UV–Vis DRS), photoluminescence (PL), Brunauer–Emmett–Teller–Barrett–Joyner–Halenda (BET–BJH), and electron spin resonance (ESR) in detail. Moreover, the in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was applied to elucidate the adsorption and photocatalytic reaction mechanism. The optimized BOC-MS-1.0 composites exhibited excellent visible light photocatalytic capability (51.1%) and photochemical stability for removal of NO. Based on the DMPO-ESR spin trapping, the ·O2 radicals and ·OH radicals were identified as the main active species generated from BOC-MS-1.0 under visible light irradiation. The enhanced photocatalytic performance can be ascribed to the positive synergetic effect of the MoS2 and the effective carrier separation ability.


Synergetic effect BiOCl/Bi12O17Cl2 MoS2 In situ DRIFTS investigation NO Oxidation pathway 



This research is financially supported by the National Natural Science Foundation of China (Nos. 51708078 and 41801063) and the Natural Science Foundation of Chongqing (No. 2018jcyjA1040).

Supplementary material

12598_2019_1230_MOESM1_ESM.doc (3 mb)
Supplementary material 1 (DOC 3055 kb)


  1. [1]
    Khodayari A, Vitt F, Phoenix D, Wuebbles DJ. The impact of NOx emissions from lightning on the production of aviation-induced ozone. Atmos Environ. 2018;187(5):410.CrossRefGoogle Scholar
  2. [2]
    Zhou Z, Harold MP, Luss D. NOx reduction on Ceria: impact of lean-rich cycling. Appl Catal B Environ. 2019;240(1):79.CrossRefGoogle Scholar
  3. [3]
    Guan Z, Ren J, Chen D, Hong L, Li F, Wang D, Ouyang Y, Gao Y. NOx removal by non-thermal plasma at low temperatures with amino groups additives. Korean J Chem Eng. 2016;33(11):3102.CrossRefGoogle Scholar
  4. [4]
    Zheng M, Li C, Liu S, Gui M, Ni J. Potential application of aerobic denitrifying bacterium Pseudomonas aeruginosa PCN-2 in nitrogen oxides (NOx) removal from flue gas. J Hazard Mater. 2016;318(7):571.CrossRefGoogle Scholar
  5. [5]
    Miao H, Yang J, Wei Y, Li W, Zhu Y. Visible-light photocatalysis of PDI nanowires enhanced by plasmonic effect of the gold nanoparticles. Appl Catal B Environ. 2018;239(12):61.CrossRefGoogle Scholar
  6. [6]
    Wang J, Wang C, Zhu S, Luo X, Li Z, Xu L. Benzohydroxamic acid photodegradation by prepared Ce modified TiO2. Chin J Rare Metals. 2018;42(4):393.Google Scholar
  7. [7]
    Ran J, Zhang J, Yu J, Jaroniec M, Qiao S. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev. 2014;43(22):7787.CrossRefGoogle Scholar
  8. [8]
    Dong F, Xiong T, Sun Y, Lu L, Zhang Y, Zhang H, Huang H, Zhou Y, Wu Z. Exploring the photocatalysis mechanism on insulators. Appl Catal B Environ. 2017;219(12):450.CrossRefGoogle Scholar
  9. [9]
    Bi C, Cao J, Lina H, Wang Y, Chen S. Enhanced photocatalytic activity of Bi12O17Cl2 through loading Pt quantum dots as a highly efficient electron capturer. Appl Catal B Environ. 2016;195(10):132.CrossRefGoogle Scholar
  10. [10]
    He G, Xing C, Xiao X, Hu R, Zuo X, Nan J. Facile synthesis of flower-like Bi12O17Cl2/β-Bi2O3 composites with enhanced visible light photocatalytic performance for the degradation of 4-tert-butylphenol. Appl Catal B Environ. 2015;170–171(7):1.Google Scholar
  11. [11]
    Huang H, Xiao K, He Y, Zhang T, Dong F, Du X, Zhang Y. In situ assembly of BiOI@Bi12O17Cl2 p–n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis. Appl Catal B Environ. 2016;199(11):75.CrossRefGoogle Scholar
  12. [12]
    Xiao X, Jiang J, Zhang L. Selective oxidation of benzyl alcohol into benzaldehyde over semiconductors under visible light: the case of Bi12O17Cl2 nanobelts. Appl Catal B Environ. 2013;141–143(5):487.CrossRefGoogle Scholar
  13. [13]
    Zhang W, Dong X, Jia B, Zhong J, Sun Y, Dong F. 2D BiOCl/Bi12O17Cl2 nanojunction: enhanced visible light photocatalytic NO removal and in situ DRIFTS investigation. Appl Surf Sci. 2018;430(2):571.CrossRefGoogle Scholar
  14. [14]
    Zhang W, Dong X, Liang Y, Sun Y, Dong F. Ag/AgCl nanoparticles assembled on BiOCl/Bi12O17Cl2 nanosheets: enhanced plasmonic visible light photocatalysis and in situ DRIFTS investigation. Appl Surf Sci. 2018;455(10):236.CrossRefGoogle Scholar
  15. [15]
    Xiong T, Wen M, Dong F, Yu J, Han L, Lei B, Zhang Y, Tang X, Zang Z. Three dimensional Z-scheme (BiO)2CO3/MoS2 with enhanced visible light photocatalytic NO removal. Appl Catal B Environ. 2016;199(10):87.CrossRefGoogle Scholar
  16. [16]
    Xiang Q, Yu J, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc. 2012;134(15):6575.CrossRefGoogle Scholar
  17. [17]
    Zhang W, Zhao Z, Dong F, Zhang Y. Solvent-assisted synthesis of porous g-C3N4 with efficient visible-light photocatalytic performance for NO removal. Chinese J Catal. 2017;38(2):372.CrossRefGoogle Scholar
  18. [18]
    Sun Y, Zhang W, Xiong T, Zhao Z, Dong F, Wang R. Growth of BiOBr nanosheets on C3N4 nanosheets to construct two-dimensional nanojunctions with enhanced photoreactivity for NO removal. J Colloid Interface Sci. 2014;418(3):317.CrossRefGoogle Scholar
  19. [19]
    Dong F, Bian J, Sun Y, Xiong T, Zhang W. The rapid synthesis of photocatalytic (BiO)2CO3 single-crystal nanosheets via an eco-friendly approach. CrystEngComm. 2014;16(17):3592.CrossRefGoogle Scholar
  20. [20]
    Zhang W, Zhang J, Dong F, Zhang Y. Facile synthesis of in situ phosphorus-doped g-C3N4 with enhanced visible light photocatalytic property for NO purification. RSC Adv. 2016;6(91):88085.CrossRefGoogle Scholar
  21. [21]
    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc. 2011;133(19):7296.CrossRefGoogle Scholar
  22. [22]
    Cheng C, Liu G, Kang Du, Li G, Zhang W, Sanna S, Chen Y, Pryds N, Wang K. Enhanced visible light catalytic activity of MoS2/TiO2/Ti photocathode by hybrid-junction. Appl Catal B Environ. 2018;237(12):416.CrossRefGoogle Scholar
  23. [23]
    Roy S, Choi W, Jeon S, Kim DH, Kim H, Yun SJ, Lee Y, Lee J, Kim Y, Kim J. Atomic observation of filling vacancies in monolayer transition metal sulfides by chemically sourced sulfur atoms. Nano Lett. 2018;18(7):4523.CrossRefGoogle Scholar
  24. [24]
    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011;11(12):5111.CrossRefGoogle Scholar
  25. [25]
    Feng X, Zhang W, Sun Y, Huang H, Dong F. Fe (III) cluster-grafted (BiO)2CO3 superstructures: in situ DRIFTS investigation on IFCT-enhanced visible light photocatalytic NO oxidation. Environ Sci Nano. 2017;4(3):604.CrossRefGoogle Scholar
  26. [26]
    Sivachandiran L, Thevenet F, Rousseau A, Bianchi D. NO2 adsorption mechanism on TiO2: an in situ transmission infrared spectroscopy study. Appl Catal B Environ. 2016;198(12):411.CrossRefGoogle Scholar
  27. [27]
    Weingand T, Kuba S, Hadjiivanov K, Knözinger H. Nature and reactivity of the surface species formed after NO adsorption and NO + O2 coadsorption on a WO3–ZrO2 catalyst. J Catal. 2002;209(2):539.CrossRefGoogle Scholar
  28. [28]
    Savara A, Weitz E. Elucidation of intermediates and mechanisms in heterogeneous catalysis using infrared spectroscopy. Annu Rev Phys Chem. 2014;265(1):49.Google Scholar
  29. [29]
    Wu JCS, Cheng YT. In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation. J Catal. 2006;237(2):393.CrossRefGoogle Scholar
  30. [30]
    Kantcheva M. Identification, stability, and reactivity of NOx species adsorbed on titania-supported manganese catalysts. J Catal. 2001;204(2):479.CrossRefGoogle Scholar
  31. [31]
    Zhang W, Liu X, Dong X, Dong F, Zhang Y. Facile synthesis of Bi12O17Br2 and Bi4O5Br2 nanosheets: in situ DRIFTS investigation of photocatalytic NO oxidation conversion pathway. Chin J Catal. 2017;38(12):2030.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Inorganic Functional Materials, Department of Scientific Research ManagementChongqing Normal UniversityChongqingChina
  2. 2.Research Center for Environmental Science and Technology, Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and ResourcesChongqing Technology and Business UniversityChongqingChina
  4. 4.Chongqing Key Laboratory of Earth Surface Processes and Environmental Remote Sensing in Three Gorges Reservoir AreaChongqing Normal UniversityChongqingChina

Personalised recommendations