Advertisement

Rare Metals

pp 1–9 | Cite as

Antibacterial ability and cytocompatibility of Cu-incorporated Ni–Ti–O nanopores on NiTi alloy

  • Jia-Ming Zhang
  • Yong-Hua Sun
  • Ya Zhao
  • Yan-Lian Liu
  • Xiao-Hong Yao
  • Bin Tang
  • Rui-Qiang HangEmail author
Article
  • 13 Downloads

Abstract

Nearly equiatomic nickel–titanium (NiTi) alloy is an ideal implant biomaterial because of its shape memory effect, superelasticity, low elastic modulus as well as other desirable properties. However, it is prone to infection because of its poor antibacterial ability. The present work incorporated Cu into Ni–Ti–O nanopores (NP–Cu) anodically grown on the NiTi alloy to enhance its antibacterial ability, which was realized through electrodeposition. Our results show that incorporation of Cu (0.78 at%–2.37 at%) has little influence on the NP diameter, length and morphology. The release level of Cu ions is in line with loadage which may be responsible for the improved antibacterial ability of the NiTi alloy to combat possible bacterial infection in vivo. Meanwhile, the NP–Cu shows better cytocompatibility and even can promote proliferation of bone marrow mesenchymal stem cells (BMSCs), up-regulate collagen secretion and extracellular matrix mineralization when compared with Cu-free sample. Better antibacterial ability and cytocompatibility of the NP–Cu render them to be promising when serving as NiTi implant coatings.

Keywords

Nickel–titanium alloy Nickel–titanium–oxygen nanopores Copper Antibacterial ability Cytocompatibility 

Notes

Acknowledgements

This work was financially supported by the Fund for Shanxi “1331 Project” Key Innovative Research Team (No. 1331KIRT), the Natural Science Foundation of Shanxi Province (No. 201801D121093) and the Key Innovative Research Team in Science and Technology of Shanxi Province (No. 201805D131001).

References

  1. [1]
    Liu X, Wu S, Yeung KWK, Chan YL, Hu T, Xu Z, Liu X, Chung JCY, Cheung KMC, Chu PK. Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds. Biomaterials. 2011;32(2):330.CrossRefGoogle Scholar
  2. [2]
    Wu S, Liu X, Yeung KWK, Guo H, Li P, Hu T, Chung CY, Chu PK. Surface nano-architectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants. Surf Coat Technol. 2013;233:13.CrossRefGoogle Scholar
  3. [3]
    Hang R, Zhang M, Ma S, Chu PK. Biological response of endothelial cells to diamond-like carbon-coated NiTi alloy. J Biomed Mater Res A. 2012;100(2):496.CrossRefGoogle Scholar
  4. [4]
    Liu Y, Ren Z, Bai L, Zong M, Gao A, Hang R, Jia H, Tang B, Chu PK. Relationship between Ni release and cytocompatibility of Ni–Ti–O nanotubes prepared on biomedical NiTi alloy. Corros Sci. 2017;123:209.CrossRefGoogle Scholar
  5. [5]
    Tan L, Li J, Liu X, Cui Z, Yang X, Zhu S, Li Z, Yuan X, Zheng Y, Yeung KW. Rapid biofilm eradication on bone implants using red phosphorus and near-infrared light. Adv Mater. 2018;30(31):1801808.CrossRefGoogle Scholar
  6. [6]
    Chen Y, Gao A, Bai L, Wang Y, Wang X, Zhang X, Huang X, Hang R, Tang B, Chu PK. Antibacterial, osteogenic, and angiogenic activities of SrTiO3 nanotubes embedded with Ag2O nanoparticles. Mater Sci Eng C. 2017;75:1049.CrossRefGoogle Scholar
  7. [7]
    Gao A, Hang R, Huang X, Zhao L, Zhang X, Wang L, Tang B, Ma S, Chu PK. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials. 2014;35(13):4223.CrossRefGoogle Scholar
  8. [8]
    Hang R, Liu Y, Bai L, Zhang X, Huang X, Jia H, Tang B. Length-dependent corrosion behavior, Ni2+ release, cytocompatibility, and antibacterial ability of Ni–Ti–O nanopores anodically grown on biomedical NiTi alloy. Mater Sci Eng C. 2018;89:1.CrossRefGoogle Scholar
  9. [9]
    Hang R, Liu Y, Bai L, Zong M, Wang X, Zhang X, Huang X, Tang B. Electrochemical synthesis, corrosion behavior and cytocompatibility of Ni–Ti–O nanopores on NiTi alloy. Mater Lett. 2017;202:5.CrossRefGoogle Scholar
  10. [10]
    Liu Y, Hang R, Zhao Y, Bai L, Sun Y, Yao X, Jia H, Tang B, Hang R. The effects of annealing temperature on corrosion behavior, Ni2+ release, cytocompatibility, and antibacterial ability of Ni–Ti–O nanopores on NiTi alloy. Surf Coat Technol. 2018;352:175.CrossRefGoogle Scholar
  11. [11]
    Denkhaus E, Salnikow K. Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol. 2002;42(1):35.CrossRefGoogle Scholar
  12. [12]
    Bai L, Hang R, Gao A, Zhang X, Huang X, Wang Y, Tang B, Zhao L, Chu PK. Nanostructured titanium–silver coatings with good antibacterial activity and cytocompatibility fabricated by one-step magnetron sputtering. Appl Surf Sci. 2015;355:32.CrossRefGoogle Scholar
  13. [13]
    Xu Z, Li M, Li X, Liu X, Ma F, Wu S, Yeung K, Han Y, Chu PK. Antibacterial activity of silver doped titanate nanowires on Ti implants. ACS Appl Mater Interfaces. 2016;8(26):16584.CrossRefGoogle Scholar
  14. [14]
    Zong M, Bai L, Liu Y, Wang X, Zhang X, Huang X, Hang R, Tang B. Antibacterial ability and angiogenic activity of Cu–Ti–O nanotube arrays. Mater Sci Eng C. 2017;71:93.CrossRefGoogle Scholar
  15. [15]
    Hang R, Gao A, Huang X, Wang X, Zhang X, Qin L, Tang B. Antibacterial activity and cytocompatibility of Cu–Ti–O nanotubes. J Biomed Mater Res A. 2014;102(6):1850.CrossRefGoogle Scholar
  16. [16]
    Wang L, Ren Y, Qin G. Research progress of Zn-based alloys as biodegradable materials. Chin J Rare Metals. 2017;41(5):571.Google Scholar
  17. [17]
    Zhang K, Zhu Y, Liu X, Cui Z, Yang X, Yeung KWK, Pan H, Wu S. Sr/ZnO doped titania nanotube array: an effective surface system with excellent osteoinductivity and self-antibacterial activity. Mater Des. 2017;130:403.CrossRefGoogle Scholar
  18. [18]
    Kalaivani S, Singh RK, Ganesan V, Kannan S. Effect of copper (Cu2+) inclusion on the bioactivity and antibacterial behavior of calcium silicate coatings on titanium metal. J Mater Chem B. 2014;2(7):846.CrossRefGoogle Scholar
  19. [19]
    Matsumoto N, Sato K, Yoshida K, Hashimoto K, Toda Y. Preparation and characterization of β-tricalcium phosphate co-doped with monovalent and divalent antibacterial metal ions. Acta Biomater. 2009;5(8):3157.CrossRefGoogle Scholar
  20. [20]
    Zhao D-P, Tang J-C, Nie H-M, Zhang Y, Chen Y-K, Zhang X, Li H-X, Yan M. Macro-micron-nano-featured surface topography of Ti–6Al–4V alloy for biomedical applications. Rare Met. 2018;37(12):1055.CrossRefGoogle Scholar
  21. [21]
    Huang R, Han Y, Lu S. Enhanced osteoblast functions and bactericidal effect of Ca and Ag dual-ion implanted surface layers on nanograined titanium alloys. J Mater Chem B. 2014;2(28):4531.CrossRefGoogle Scholar
  22. [22]
    Necula BS, van Leeuwen JP, Fratila-Apachitei LE, Zaat SA, Apachitei I, Duszczyk J. In vitro cytotoxicity evaluation of porous TiO2–Ag antibacterial coatings for human fetal osteoblasts. Acta Biomater. 2012;8(11):4191.CrossRefGoogle Scholar
  23. [23]
    Sharifahmadian O, Salimijazi HR, Fathi MH, Mostaghimi J, Pershin L. Relationship between surface properties and antibacterial behavior of wire arc spray copper coatings. Surf Coat Technol. 2013;233:74.CrossRefGoogle Scholar
  24. [24]
    Xi T, Shahzad MB, Xu D, Sun Z, Zhao J, Yang C, Qi M, Yang K. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel. Mater Sci Eng C. 2017;71:1079.CrossRefGoogle Scholar
  25. [25]
    Wu H, Zhang X, He X, Li M, Huang X, Hang R, Tang B. Wear and corrosion resistance of anti-bacterial Ti–Cu–N coatings on titanium implants. Appl Surf Sci. 2014;317:614.CrossRefGoogle Scholar
  26. [26]
    Matos L, Gouveia A, Almeida H. Copper ability to induce premature senescence in human fibroblasts. Age. 2012;34(4):783.CrossRefGoogle Scholar
  27. [27]
    Burghardt I, Luthen F, Prinz C, Kreikemeyer B, Zietz C, Neumann HG, Rychly J. A dual function of copper in designing regenerative implants. Biomaterials. 2015;44:36.CrossRefGoogle Scholar
  28. [28]
    Rodriguez-Contreras A, Bello DG, Nanci A. Surface nanoporosity has a greater influence on osteogenic and bacterial cell adhesion than crystallinity and wettability. Appl Surf Sci. 2018;445:255.CrossRefGoogle Scholar
  29. [29]
    Gulati K, Moon HJ, Li T, Sudheesh Kumar PT, Ivanovski S. Titania nanopores with dual micro-/nano-topography for selective cellular bioactivity. Mater Sci Eng C. 2018;91:624.CrossRefGoogle Scholar
  30. [30]
    Bello DG, Fouillen A, Badia A, Nanci A. A nanoporous titanium surface promotes the maturation of focal adhesions and formation of filopodia with distinctive nanoscale protrusions by osteogenic cells. Acta Biomater. 2017;60:339.CrossRefGoogle Scholar
  31. [31]
    Wu Q, Li J, Zhang W, Qian H, She W, Pan H, Wen J, Zhang X, Liu X, Jiang X. Antibacterial property, angiogenic and osteogenic activity of Cu-incorporated TiO2 coating. J Mater Chem B. 2014;2(39):6738.CrossRefGoogle Scholar
  32. [32]
    Huang X, Liu Y, Yu H, Yang X, Wang Y, Hang R, Tang B. One-step fabrication of cytocompatible micro/nano-textured surface with TiO2 mesoporous arrays on titanium by high current anodization. Electrochim Acta. 2016;199:116.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Institute of Surface Engineering, College of Materials Science and TechnologyTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations