Rare Metals

pp 1–8 | Cite as

Effects of clinical dental implant abutment materials and their surface characteristics on initial bacterial adhesion

  • Yu-Shan Huang
  • Her-Hsiung HuangEmail author


Initial bacterial adhesion on dental implant abutment is related to its surface chemical composition and physical characteristics. Selection of appropriate abutment materials resistant to bacterial adhesion is important for dental implant maintenance. The aim of present study was to evaluate the effect of different properties of abutment materials on initial bacterial adhesion in vitro. Polished zirconia (PZ group), polished titanium (PT group) and ground titanium (GT group) samples were prepared to simulate clinical dental implant abutments. Chemical compositions, morphology, roughness, hydrophilicity and surface free energy of materials were analyzed. Oral commensal bacterium Streptococcus mitis was used to evaluate initial bacterial adhesion via turbidity test and colony-forming unit counting. The results showed that GT group presented the highest roughness, hydrophilicity and surface free energy. After 6-h incubation, GT group showed the significantly highest adhered bacteria counts; while non-significant difference existed between PT and PZ groups. Within the clinically applicable range used in present study, the surface physical characteristics, instead of surface chemical composition, of dental abutment material have the pronounced influence on initial 6-h bacterial adhesion.


Dental implant abutment Bacterial adhesion Zirconia Titanium Surface characteristics 



This study was financially supported by the National Yang-Ming University Hospital (Nos. RD 2011-009, RD 2012-021 and RD 2013-013), Taiwan.


  1. [1]
    Doornewaard R, Christiaens V, De Bruyn H, Jacobsson M, Cosyn J, Vervaeke S, Jacquet W. Long-term effect of surface roughness and patients’ factors on crestal bone loss at dental implants. A systematic review and meta-analysis. Clin Implant Dent Relat Res. 2017;19(2):372.CrossRefGoogle Scholar
  2. [2]
    Pjetursson BE, Asgeirsson AG, Zwahlen M, Sailer I. Improvements in implant dentistry over the last decade: comparison of survival and complication rates in older and newer publications. Int J Oral Maxillofac Implants. 2014;29(S):308.CrossRefGoogle Scholar
  3. [3]
    Marcantonio C, Nicoli LG, Marcantonio Junior E, Zandim-Barcelos DL. Prevalence and possible risk factors of peri-implantitis: a concept review. J Contemp Dent Pract. 2015;16(9):750.CrossRefGoogle Scholar
  4. [4]
    Link-Bindo EE, Soltys J, Donatelli D, Cavanaugh R. Common prosthetic implant complications in fixed restorations. Compend Contin Educ Dent. 2016;37(7):431.Google Scholar
  5. [5]
    Derks J, Tomasi C. Peri-implant health and disease. A systematic review of current epidemiology. J Clin Periodontol. 2015;42(S16):S158.CrossRefGoogle Scholar
  6. [6]
    Rakic M, Grusovin MG, Canullo L. The microbiologic profile associated with peri-implantitis in humans: a systematic review. Int J Oral Maxillofac Implants. 2016;31(2):359.CrossRefGoogle Scholar
  7. [7]
    Stokman MA, van Winkelhoff AJ, Vissink A, Spijkervet FK, Raghoebar GM. Bacterial colonization of the peri-implant sulcus in dentate patients: a prospective observational study. Clin Oral Investig. 2017;21(2):717.CrossRefGoogle Scholar
  8. [8]
    Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res. 2006;17(S2):68.CrossRefGoogle Scholar
  9. [9]
    Subramani K, Jung RE, Molenberg A, Hammerle CH. Biofilm on dental implants: a review of the literature. Int J Oral Maxillofac Implants. 2009;24(4):616.Google Scholar
  10. [10]
    Lee A, Wang HL. Biofilm related to dental implants. Implant Dent. 2010;19(5):387.CrossRefGoogle Scholar
  11. [11]
    Elter C, Heuer W, Demling A, Hannig M, Heidenblut T, Bach FW, Stiesch-Scholz M. Supra- and subgingival biofilm formation on implant abutments with different surface characteristics. Int J Oral Maxillofac Implants. 2008;23(2):327.Google Scholar
  12. [12]
    Yamane K, Ayukawa Y, Takeshita T, Furuhashi A, Yamashita Y, Koyano K. Bacterial adhesion affinities of various implant abutment materials. Clin Oral Implants Res. 2013;24(12):1310.CrossRefGoogle Scholar
  13. [13]
    De Bruyn H, Christiaens V, Doornewaard R, Jacobsson M, Cosyn J, Jacquet W, Vervaeke S. Implant surface roughness and patient factors on long-term peri-implant bone loss. Periodontol 2000. 2017;73(1):218.CrossRefGoogle Scholar
  14. [14]
    Scarano A, Piattelli M, Caputi S, Favero GA, Piattelli A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: an in vivo human study. J Periodontol. 2004;75(2):292.CrossRefGoogle Scholar
  15. [15]
    Salihoglu U, Boynuegri D, Engin D, Duman AN, Gokalp P, Balos K. Bacterial adhesion and colonization differences between zirconium oxide and titanium alloys: an in vivo human study. Int J Oral Maxillofac Implants. 2011;26(1):101.Google Scholar
  16. [16]
    van Brakel R, Cune MS, van Winkelhoff AJ, de Putter C, Verhoeven JW, van der Reijden W. Early bacterial colonization and soft tissue health around zirconia and titanium abutments: an in vivo study in man. Clin Oral Implants Res. 2011;22(6):571.CrossRefGoogle Scholar
  17. [17]
    Egawa M, Miura T, Kato T, Saito A, Yoshinari M. In vitro adherence of periodontopathic bacteria to zirconia and titanium surfaces. Dent Mater J. 2013;32(1):101.CrossRefGoogle Scholar
  18. [18]
    Nascimento C, Pita MS, Fernandes FH, Pedrazzi V, de Albuquerque Junior RF, Ribeiro RF. Bacterial adhesion on the titanium and zirconia abutment surfaces. Clin Oral Implants Res. 2014;25(3):337.CrossRefGoogle Scholar
  19. [19]
    Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. 1997;13(4):258.CrossRefGoogle Scholar
  20. [20]
    Owens DK, Wendt RC. Estimation of the surface free energy of polymers. J Appl Polym Sci. 1969;13(8):1741.CrossRefGoogle Scholar
  21. [21]
    Kwok DY, Neumann AW. Contact angle measurement and contact angle interpretation. Adv Colloid Interface Sci. 1999;81(3):167.CrossRefGoogle Scholar
  22. [22]
    Yeo IS, Kim HY, Lim KS, Han JS. Implant surface factors and bacterial adhesion: a review of the literature. Int J Artif Organs. 2012;35(10):762.CrossRefGoogle Scholar
  23. [23]
    Tanner J, Robinson C, Soderling E, Vallittu P. Early plaque formation on fibre-reinforced composites in vivo. Clin Oral Investig. 2005;9(3):154.CrossRefGoogle Scholar
  24. [24]
    Al-Ahmad A, Wiedmann-Al-Ahmad M, Fackler A, Follo M, Hellwig E, Bachle M, Hannig C, Han JS, Wolkewitz M, Kohal R. In vivo study of the initial bacterial adhesion on different implant materials. Arch Oral Biol. 2013;58(9):1139.CrossRefGoogle Scholar
  25. [25]
    Badihi HL, Sela MN, Steinberg D, Rosen G, Kohavi D. The adhesion of oral bacteria to modified titanium surfaces: role of plasma proteins and electrostatic forces. Clin Oral Implants Res. 2013;24(SA100):49.CrossRefGoogle Scholar
  26. [26]
    Quirynen M, Bollen CM, Papaioannou W, Van Eldere J, van Steenberghe D. The influence of titanium abutment surface roughness on plaque accumulation and gingivitis: short-term observations. Int J Oral Maxillofac Implants. 1996;11(2):169.Google Scholar
  27. [27]
    Al-Radha AS, Dymock D, Younes C, O’Sullivan D. Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion. J Dent. 2012;40(2):146.CrossRefGoogle Scholar
  28. [28]
    Etxeberria M, Lopez-Jimenez L, Merlos A, Escuin T, Vinas M. Bacterial adhesion efficiency on implant abutments: a comparative study. Int Microbiol. 2013;16(4):235.Google Scholar
  29. [29]
    Saidi W, Hfayedh N, Megriche A, Girtan M, El Maaoui M. Hydrophilic/hydrophobic and optical properties of B2O3 doped TiO2 sol–gel thin films: effect of B2O3 content, film thickness and surface roughness. Mater Chem Phys. 2018;215(15):31.CrossRefGoogle Scholar
  30. [30]
    Mozammel M, Khajeh M, Ilkhechi NN. Effect of surface roughness of 316L stainless steel substrate on the morphological and super-hydrophobic property of TiO2 thin films coatings. Silicon. 2018;10(6):2603.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of DentistryNational Yang-Ming UniversityTaipeiChina
  2. 2.Division of DentistryNational Yang-Ming University HospitalI-LanChina
  3. 3.Institute of Oral BiologyNational Yang-Ming UniversityTaipeiChina
  4. 4.Department of Bioinformatics and Medical EngineeringAsia UniversityTaichungChina
  5. 5.Department of Medical ResearchChina Medical University HospitalTaichungChina
  6. 6.Graduate Institute of Basic Medical ScienceChina Medical UniversityTaichungChina
  7. 7.Department of StomatologyTaipei Veterans General HospitalTaipeiChina
  8. 8.Department of Education and ResearchTaipei City HospitalTaipeiChina

Personalised recommendations