Rare Metals

pp 1–12 | Cite as

Corrosion resistance of nanostructured magnesium hydroxide coating on magnesium alloy AZ31: influence of EDTA

  • Xiao-Li Fan
  • Yuan-Fang Huo
  • Chang-Yang Li
  • M. Bobby Kannan
  • Xiao-Bo Chen
  • Shao-Kang Guan
  • Rong-Chang ZengEmail author
  • Quan-Li MaEmail author


A hexagonal nanosheet Mg(OH)2 coating was prepared through a one-step hydrothermal method using LiOH solution as mineralizer and then modified by ethylenediaminetetraacetic acid (EDTA) to minimize the rapid corrosion of AZ31 Mg alloy. The performance of the coating was evaluated using electrochemical technique, hydrogen evolution measurements, nanoscratch test, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) patterns and field-emission scanning electron microscopy (FESEM). The results suggested that the corrosion rate of bare AZ31 Mg alloys was significantly reduced by one and two orders of magnitude through the protection from Mg(OH)2 coating and modification with EDTA (i.e., EDTA-Mg(OH)2 coating), respectively. FESEM micrographs indicated that the modification in EDTA elicits to the formation of an EDTA-Mg(OH)2 composite with a thickness as twice as that of as-prepared Mg(OH)2 coating. Nanoscratch tests revealed strong adhesion between the composite or Mg(OH)2 coating and the substrate. The study of formation and corrosion mechanisms of the coatings manifested that Mg(OH)2 was first formed near the intermetallic compound AlMn particles and gradually covered the entire surface, wherein the AlMn particles played an important role in the coating growth process. And it also proved that EDTA accelerated the formation of Mg(OH)2.


Corrosion resistance Magnesium alloy Magnesium hydroxide EDTA Intermetallic compound 



This work was financially supported by the National Natural Science Foundation of China (No. 51571134) and the Shandong University of Science and Technology Research Fund (No. 2014TDJH104).


  1. [1]
    Zeng RC, Cui LY, Ke W. Biomedical magnesium alloys: composition, microstructure and corrosion. Acta Metall Sin. 2018;54(9):1215.Google Scholar
  2. [2]
    Wang GL, Wan Y, Ma ZJ, Guo YC, Yang Z, Wang P, Li JP. Glass-forming ability and corrosion performance of Mn-doped Mg–Zn–Ca amorphous alloys for biomedical applications. Rare Met. 2018;37(7):579.CrossRefGoogle Scholar
  3. [3]
    Zhang X, Wang ZH, Zhou ZH, Xu JM, Zhong ZJ, Yuan HL. Corrosion behavior of Al–3.0 wt%Mg alloy in NaCl solution under magnetic field. Rare Met. 2017;36(8):627.CrossRefGoogle Scholar
  4. [4]
    Duan G, Yang L, Liao S, Zhang C, Lu X, Yang Y, Zhang B, Wei Y, Zhang T, Yu B, Zhang X, Wang F. Designing for the chemical conversion coating with high corrosion resistance and low electrical contact resistance on AZ91D magnesium alloy. Corros Sci. 2018;135:197.CrossRefGoogle Scholar
  5. [5]
    Song YW, Shan DY, Han EH. Pitting corrosion of a rare earth Mg alloy GW93. J Mater Sci Technol. 2017;33(9):954.CrossRefGoogle Scholar
  6. [6]
    Zhang G, Wu L, Tang A, Ma Y, Song GL, Zheng D, Jiang B, Atrens A, Pan F. Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31. Corros Sci. 2018;139:370.CrossRefGoogle Scholar
  7. [7]
    Nezamdoust S, Seifzadeh D, Rajabalizadeh Z. PTMS/OH-MWCNT sol-gel nanocomposite for corrosion protection of magnesium alloy. Surf Coat Technol. 2017;335:228.CrossRefGoogle Scholar
  8. [8]
    Phuong NV, Gupta M, Moon S. Enhanced corrosion performance of magnesium phosphate conversion coating on AZ31 magnesium alloy. Chin J Nonferrous Met. 2017;27(5):1087.CrossRefGoogle Scholar
  9. [9]
    Abatti GP, Pires ATN, Spinelli A, Scharnagl N, Conceição TFD. Conversion coating on magnesium alloy sheet (AZ31) by vanillic acid treatment: preparation, characterization and corrosion behavior. J Alloys Compd. 2017;738:224.CrossRefGoogle Scholar
  10. [10]
    Chen J, Tan L, Yu X, Etim IP, Ibrahim M, Yang K. Mechanical properties of magnesium alloys for medical application: a review. J Mech Behav Biomed Mater. 2018;87:68.CrossRefGoogle Scholar
  11. [11]
    Cui LY, Wei GB, Zeng RC, Li SQ, Zou YH, Han EH. Corrosion resistance of a novel SnO2-doped dicalcium phosphate coating on AZ31 magnesium alloy. Biomed Mater. 2017;3(3):245.Google Scholar
  12. [12]
    Dong KH, Song YW, Shan DY, Han EH. An optimization of pretreatment for the phosphate conversion film on WE43 magnesium alloy. Mater Corros. 2018;69(4):481.CrossRefGoogle Scholar
  13. [13]
    Cui LY, Zeng RC, Guan SK, Qi WC, Zhang F, Li SQ, Han EH. Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg–Ca alloys: the influence of porosity. J Alloys Compd. 2017;695:2464.CrossRefGoogle Scholar
  14. [14]
    Sun L, Ma Y, Dong H, An L, Wang S. Role of Sodium Silicate for Coating Forming on Magnesium Alloys with Micro Arc Oxidation. Chin J Rare Met. 2018.
  15. [15]
    Li Q, Yang W, Liu C, Wang D, Liang J. Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: effects of electrolytes. Surf Coat Technol. 2017;316:162.CrossRefGoogle Scholar
  16. [16]
    Cui LY, Qin PH, Huang XL, Yin ZZ, Zeng RC, Li SQ, Han EH, Wang ZL. Electrodeposition of TiO2 layer-by-layer assembled composite coating and silane treatment on Mg alloy for corrosion resistance. Surf Coat Technol. 2017;324:560.CrossRefGoogle Scholar
  17. [17]
    Cui LY, Zeng RC, Zhu XX, Pang TT, Li SQ, Zhang F. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31. Front Mater Sci. 2016;10(2):134.CrossRefGoogle Scholar
  18. [18]
    Cui LY, Zeng RC, Li SQ, Zhang F, Han EH. Corrosion resistance of layer-by-layer assembled polyvinylpyrrolidone/polyacrylic acid and amorphous silica films on AZ31 magnesium alloys. RSC Adv. 2016;6(68):63107.CrossRefGoogle Scholar
  19. [19]
    Zhao YB, Liu HP, Li CY, Chen Y, Li SQ, Zeng RC, Wang ZL. Corrosion resistance and adhesion strength of a spin-assisted layer-by-layer assembled coating on AZ31 magnesium alloy. Appl Surf Sci. 2018;434:787.CrossRefGoogle Scholar
  20. [20]
    Peng F, Wang D, Cao H, Liu X. Loading 5-Fluorouracil into calcined Mg/Al layered double hydroxide on AZ31 via memory effect. Mater Lett. 2018;213:383.CrossRefGoogle Scholar
  21. [21]
    Yao QS, Zhang F, Song L, Zeng RC, Cui LY, Li SQ, Wang ZL, Han EH. Corrosion resistance of a ceria/polymethyltrimethoxysilane modified Mg-Al-layered double hydroxide on AZ31 magnesium alloy. J Alloys Compd. 2018;764:913.CrossRefGoogle Scholar
  22. [22]
    Wu L, Pan F, Liu Y, Zhang G, Tang A, Atrens A. Influence of pH on the growth behaviour of Mg–Al LDH films. Surf Eng. 2017;34(9):674.CrossRefGoogle Scholar
  23. [23]
    Surmeneva MA, Mukhametkaliyev TM, Khakbaz H, Surmenev RA, Bobby Kannan M. Ultrathin film coating of hydroxyapatite (HA) on a magnesium–calcium alloy using RF magnetron sputtering for bioimplant applications. Mater Lett. 2015;152:280.CrossRefGoogle Scholar
  24. [24]
    Kannan MB, Liyanaarachchi S. Hybrid coating on a magnesium alloy for minimizing the localized degradation for load-bearing biodegradable mini-implant applications. Mater Chem Phys. 2013;142(1):350.CrossRefGoogle Scholar
  25. [25]
    Loperena AP, Lehr IL, Saidman SB. Formation of a cerium conversion coating on magnesium alloy using ascorbic acid as additive. Characterisation and anticorrosive properties of the formed films. J Magnesium Alloys. 2016;4(4):278.Google Scholar
  26. [26]
    Chen XB, Birbilis N, Abbott TB. Review of corrosion-resistant conversion coatings for magnesium and its alloys. Corrosion. 2011;67(3):16.CrossRefGoogle Scholar
  27. [27]
    Mukhametkaliyev TM, Surmeneva MA, Vladescu A, Cotrut CM, Braic M, Dinu M, Vranceanu MD, Pana I, Mueller M, Surmenev RA. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance. Mater Sci Eng C Mater Biol Appl. 2017;75:95.CrossRefGoogle Scholar
  28. [28]
    Zeng RC, Zhang F, Lan ZD, Cui HZ, Han EH. Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminium alloys. Corros Sci. 2014;88:452.CrossRefGoogle Scholar
  29. [29]
    Wang L, Zong Q, Sun W, Yang Z, Liu G. Chemical modification of hydrotalcite coating for enhanced corrosion resistance. Corros Sci. 2015;93:256.CrossRefGoogle Scholar
  30. [30]
    Jayaraj J, Raj SA, Srinivasan A, Ananthakumar S, Pillai UTS, Dhaipule NGK, Mudali K. Composite magnesium phosphate coatings for improved corrosion resistance of magnesium AZ31 alloy. Corros Sci. 2016;113:104.CrossRefGoogle Scholar
  31. [31]
    Pilarska AA, Łukasz K, Jesionowski T. Recent development in the synthesis, modification and application of Mg(OH)2 and MgO: a review. Powder Technol. 2017;319:373.CrossRefGoogle Scholar
  32. [32]
    Zhu Y, Wu G, Zhang YH, Zhao Q. Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31. Appl Surf Sci. 2011;257(14):6129.CrossRefGoogle Scholar
  33. [33]
    Wang C, Shen J, Zhang X, Duan B, Sang J. In vitro degradation and cytocompatibility of a silane/Mg(OH)2 composite coating on AZ31 alloy by spin coating. J Alloys Compd. 2017;714:186.CrossRefGoogle Scholar
  34. [34]
    Huang H, Liu L, Zhang L, Zhao Q, Zhou Y, Yuan S, Tang Z, Liu X. Peroxidase-like activity of ethylene diamine tetraacetic acid and its application for ultrasensitive detection of tumor biomarkers and circular tumor cells. Anal Chem. 2017;89(1):666.CrossRefGoogle Scholar
  35. [35]
    Zeng RC, Lan ZD, Kong LH, Huang YD, Cui HZ. Characterization of calcium-modified zinc phosphate conversion coatings and their influences on corrosion resistance of AZ31 alloy. Surf Coat Technol. 2011;205(11):3347.CrossRefGoogle Scholar
  36. [36]
    Ding ZY, Cui LY, Chen XB, Zeng RC, Guan SK, Li SQ, Zhang F, Zou YH, Liu QY. In vitro corrosion of micro-arc oxidation coating on Mg-1Li-1Ca alloy—the influence of intermetallic compound Mg2Ca. J Alloys Compd. 2018;764:250.CrossRefGoogle Scholar
  37. [37]
    Cao L, Wang L, Fan L, Xiao W, Lin B, Xu Y, Liang J, Cao B. RGDC peptide-induced biomimetic calcium phosphate coating formed on AZ31 magnesium alloy. Mater (Basel). 2017;10(4):358.CrossRefGoogle Scholar
  38. [38]
    Zhang F, Zhang C, Song L, Zeng R, Li S, Cui H. Fabrication of the superhydrophobic surface on magnesium alloy and its corrosion resistance. J Mater Sci Technol. 2015;31(11):1139.CrossRefGoogle Scholar
  39. [39]
    Cui LY, Hu Y, Zeng RC, Yang YX, Sun DD, Li SQ, Zhang F, Han EH. New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions. J Mater Sci Technol. 2017;33(9):971.CrossRefGoogle Scholar
  40. [40]
    Feng J, Chen Y, Liu X, Liu T, Zou L, Wang Y, Ren Y, Fan Z, Lv Y, Zhang M. In-situ hydrothermal crystallization Mg(OH)2 films on magnesium alloy AZ91 and their corrosion resistance properties. Mater Chem Phys. 2013;143(1):322.CrossRefGoogle Scholar
  41. [41]
    Kaseem M, Ko YG. Formation of flower-like structures for optimizing the corrosion resistance of Mg alloy. Mater Lett. 2018;221:196.CrossRefGoogle Scholar
  42. [42]
    Cui LY, Gao SD, Li PP, Zeng RC, Zhang F, Li SQ, Han EH. Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Corros Sci. 2017;118:84.CrossRefGoogle Scholar
  43. [43]
    Qiu L, Xie R, Ding P, Qu B. Preparation and characterization of Mg(OH)2 nanoparticles and flame-retardant property of its nanocomposites with EVA. Compos Struct. 2003;62(3–4):391.CrossRefGoogle Scholar
  44. [44]
    Zhang F, Zhang C, Zeng R, Song L, Guo L, Huang X. Corrosion resistance of the superhydrophobic Mg(OH)2/Mg-Al layered double hydroxide coatings on magnesium alloys. Metals. 2016;6(4):85.CrossRefGoogle Scholar
  45. [45]
    Zhu B, Xu Y, Sun J, Yang L, Guo C, Liang J, Cao B. Preparation and characterization of aminated hydroxyethyl cellulose-induced biomimetic hydroxyapatite coatings on the AZ31 magnesium alloy. Metals. 2017;7(6):214.CrossRefGoogle Scholar
  46. [46]
    Jiang W, Hua X, Han Q, Yang X, Lu L, Wang X. Preparation of lamellar magnesium hydroxide nanoparticles via precipitation method. Powder Technol. 2009;191(3):227.CrossRefGoogle Scholar
  47. [47]
    Zhang G, Wu L, Tang A, Chen X-B, Ma Y, Long Y, Peng P, Ding X, Pan H, Pan F. Growth behavior of MgAl-layered double hydroxide films by conversion of anodic films on magnesium alloy AZ31 and their corrosion protection. Appl Surf Sci. 2018;456:419.CrossRefGoogle Scholar
  48. [48]
    Yu X, Ibrahim M, Lu S, Yang H, Tan L, Yang K. MgCu coating on Ti6Al4V alloy for orthopedic application. Mater Lett. 2018;233:35.CrossRefGoogle Scholar
  49. [49]
    Xu D, Zhou E, Zhao Y, Li H, Liu Z, Zhang D, Yang C, Lin H, Li X, Yang K. Enhanced resistance of 2205 Cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms. J Mater Sci Technol. 2018;34(8):1325.CrossRefGoogle Scholar
  50. [50]
    Ding ZY, Cui LY, Zeng RC, Zhao YB, Guan SK, Xu DK, Lin CG. Exfoliation corrosion of extruded Mg–Li–Ca alloy. J Mater Sci Technol. 2018;34(9):1550.CrossRefGoogle Scholar
  51. [51]
    Liu D, Li Y, Zhou Y, Ding Y. The preparation, characterization and formation mechanism of a calcium phosphate conversion coating on magnesium alloy AZ91D. Mater. 2018;11(6):908.CrossRefGoogle Scholar
  52. [52]
    Zhou WQ, Shan DY, Han EH, Ke W. Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy. Corros Sci. 2008;50(2):329.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Material Science and EngineeringShandong University of Science and TechnologyQingdaoChina
  2. 2.Biomaterials and Engineering Materials (BEM) Laboratory, College of Science, Technology and EngineeringJames Cook UniversityTownsvilleAustralia
  3. 3.School of EngineeringRMIT UniversityCarltonAustralia
  4. 4.School of Materials Science and EngineeringZhengzhou UniversityZhengzhouChina
  5. 5.Department of Resources and Civil EngineeringShandong University of Science and TechnologyTaianChina

Personalised recommendations