Rare Metals

pp 1–8 | Cite as

Molecular dynamics simulation and micropillar compression of deformation behavior in iridium single crystals

  • Jia-Qi Wu
  • Rui Hu
  • Jie-Ren YangEmail author
  • Bin Gan
  • Gong-Liao Luo
  • Yi Liu
  • Xi-Ming Luo


The compression behaviors of iridium single crystals with different crystalline orientations were investigated by micropillar compression tests and molecular dynamics (MD) simulations. The results indicated that the deformation process of iridium single crystals with [100] and [110] orientations was presented as the stacking faults expansion and the formation of Lomer–Cottrell locks. And the occurrence of Lomer–Cottrell locks was considered as the interaction of stacking faults on {111} planes by MD simulations. The evolution of crystal structure in compression indicated that the Lomer–Cottrell locks might contribute to the large plastic deformation of iridium single crystals. Moreover, the deformation features in MD simulations showed that the elastic modulus (E) and yield stress (σs) of iridium single crystals were significantly influenced by the temperature. The elastic modulus and yield stress gradually decreased with an increased temperature for all orientations. Meanwhile, the single crystal with a closely spaced lattice structure exhibited superior mechanical properties at a same temperature.


Iridium single crystal Crystalline orientation Deformation behavior Molecular dynamics Micropillar compression 



This study was financially supported by the National Key R&D Program of China (No. 2017YFB0305503), the Joint Funds of the National Natural Science Foundation of China (No. U1202273) and the National Natural Science Foundation of China (No. 51501075).


  1. [1]
    Hunt LB. A history of iridium. Platin Met Rev. 1987;31(1):32.Google Scholar
  2. [2]
    Echigoya J, Mumtaz K, Hayasaka Y, Aoyagi E. Electron microscopic study of sputter-deposited Ir films. J Mater Sci. 2004;39(20):6215.CrossRefGoogle Scholar
  3. [3]
    Pranee P, Nisit T. Effect of plating bath composition on chemical composition and oxygen reduction reaction activity of electrodeposited Pt–Co catalysts. Rare Met. 2018. Scholar
  4. [4]
    Zhang H, Zhu LA, Bai SX, Ye YC. Ablation-resistant Ir/Re coating on C/C composites at ultra-high temperatures. Rare Met. 2015. Scholar
  5. [5]
    Hecker SS, Rohr DL, Stein DF. Brittle fracture in iridium. Metall Mater Trans A. 1978;9(4):481.CrossRefGoogle Scholar
  6. [6]
    Zhou ZM, Peng H, Zheng L. Thermal cycling performance of La2Ce2O7/YSZ TBCs with Pt/Dy co-doped NiAl bond coat on single crystal superalloy. Rare Met. 2018. Scholar
  7. [7]
    Gandhi C, Ashby MF. On fracture mechanisms of iridium and criteria for cleavage. Scr Mater. 1979;13(5):371.Google Scholar
  8. [8]
    George TG, Stevens MF. The high-temperature impact properties of DOP-26 iridium. JOM. 1988;40(10):32.CrossRefGoogle Scholar
  9. [9]
    Mordike BL, Brookes CA. The tensile properties of iridium at high temperatures. Platin Met Rev. 1960;4(3):94.Google Scholar
  10. [10]
    Mehan RL, Duderstadt EC, Sayell EH. Creep-rupture behavior of iridium at elevated temperatures. Metall Mater Trans A. 1975;6(4):885.CrossRefGoogle Scholar
  11. [11]
    Panfilov P, Novgorodov V, Yermakov A. Fracture behavior of polycrystalline iridium under tension in the temperature range 20–1500 °C. J Mater Sci Lett. 1994;13(2):137.CrossRefGoogle Scholar
  12. [12]
    Weiland R, Lupton DF. High-temperature mechanical properties of platinum group metals. Platin Met Rev. 2006;50(4):158.CrossRefGoogle Scholar
  13. [13]
    Yermakov A, Panfilov P, Adamesku R. The main features of plastic deformation of iridium single crystals. J Mater Sci Lett. 1990;9(6):696.CrossRefGoogle Scholar
  14. [14]
    Yang JR, Wang H, Wang BQ, Hu R, Liu Y, Luo XM. Numerical and experimental study of electron beam floating zone melting of Iridium single crystal. J Mater Process Technol. 2017;250:239.CrossRefGoogle Scholar
  15. [15]
    Wu WP, Yao ZZ. Molecular dynamics simulation of stress distribution and microstructure evolution ahead of a growing crack in single crystal nickel. Theor Appl Fract Mech. 2012;62(1):67.CrossRefGoogle Scholar
  16. [16]
    Sainath G, Choudhary BK. Orientation dependent deformation behavior of BCC iron nanowires. Comput Mater Sci. 2016;111:406.CrossRefGoogle Scholar
  17. [17]
    Setoodeh AR, Attariani H, Khosrownejad M. Nickel nanowires under uniaxial loads: a molecular dynamics simulation study. Comput Mater Sci. 2008;44(2):378.CrossRefGoogle Scholar
  18. [18]
    Wen YH, Zhang Y, Wang Q, Zheng JC, Zhu ZZ. Orientation-dependent mechanical properties of Au nanowires under uniaxial loading. Comput Mater Sci. 2010;48(3):513.CrossRefGoogle Scholar
  19. [19]
    Zhang F, Xue XY, Hu R, Li JS, Fu HZ. Molecular dynamics simulation of nano-sized single crystal Iridium deformation behavior. Mater Sci Eng Powder Metall. 2014;19(2):165.CrossRefGoogle Scholar
  20. [20]
    Gornostyrev Y, Katsnelson M, Medvedeva N, Mryasov O. Peculiarities of defect structure and mechanical properties of iridium: results of ab initio electronic structure calculations. Phys Rev B. 2015;62(12):7802.CrossRefGoogle Scholar
  21. [21]
    Cawkwell M, Nguyenmanh D, Woodward C, Pettifor D, Vitek V. Origin of brittle cleavage in iridium. Science. 2005;309(5737):1059.CrossRefGoogle Scholar
  22. [22]
    Cawkwell M, Woodward C, Nguyen D. Atomistic study of a thermal cross-slip and its impact on the mechanical properties of iridium. Acta Mater. 2007;55(1):161.CrossRefGoogle Scholar
  23. [23]
    Sheng HW, Kramer MJ, Cadien A, Fujita T, Chen MW. Highly optimized embedded-atom-method potentials for fourteen fcc metals. Phys Rev B. 2011;83(13):134118.CrossRefGoogle Scholar
  24. [24]
    Soler R, Molina-Aldareguia JM, Segurado J, Lorca JL. Effect of misorientation on the compression of highly anisotropic single-crystal micropillars. Adv Eng Mater. 2012;14(11):1004.CrossRefGoogle Scholar
  25. [25]
    Reid C, Routbort J. Malleability and plastic anisotropy of iridium and copper. Metall Trans. 1972;3(8):2257.CrossRefGoogle Scholar
  26. [26]
    Hieber H, Mordike B, Haasen P. Deformation of zone-melted iridium single crystals. Platin Met Rev. 1964;8(3):102.Google Scholar
  27. [27]
    Macfarlane R, Rayne J, Jones C. Temperature dependence of elastic moduli of iridium. Phys Lett. 1966;20(3):234.CrossRefGoogle Scholar
  28. [28]
    Chen DL, Chen TC. Mechanical properties of Au nanowires under uniaxial tension with high strain-rate by molecular dynamics. Nanotechnology. 2005;16(12):2972.CrossRefGoogle Scholar
  29. [29]
    Honeycutt JD, Andersen HC. Molecular dynamics study of melting and freezing of small Lennard–Jones clusters. J Phys Chem. 1987;91(19):4950.CrossRefGoogle Scholar
  30. [30]
    Yamakov VI, Warner DH, Zamora RJ, Saether E, Curtin WA, Glaessgen EH. Investigation of crack tip dislocation emission in aluminum using multi-scale molecular dynamics simulation and continuum modeling. J Mech Phys Solids. 2014;65(5):35.CrossRefGoogle Scholar
  31. [31]
    Haasen P, Hieber H, Mordike B. Die plastische verformung von iridium einkristallen. Platin Met Rev. 1965;56(12):832.Google Scholar
  32. [32]
    Panfilov P. Deformation tracks distribution in iridium single crystals under tension. J Mater Sci. 2007;42(19):8230.CrossRefGoogle Scholar
  33. [33]
    Balk T, Hemker K. High resolution transmission electron microscopy of dislocation core dissociations in gold and iridium. Phil Mag. 2001;81(6):1507.CrossRefGoogle Scholar
  34. [34]
    Panfilov P, Yermakov A, Baturin G. The cause of cleavage in iridium single crystals. J Mater Sci Lett. 1990;9(10):1162.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina
  2. 2.State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum MetalSino-platinum Metals Co., Ltd., Kunming Institute of Precious MetalsKunmingChina

Personalised recommendations