Advertisement

Rare Metals

pp 1–7 | Cite as

Comprehensive tensile properties improved by deep cryogenic treatment prior to aging in friction-stir-welded 2198 Al–Li alloy

  • Jian-Qiu Sun
  • Yue MaEmail author
  • Chong Gao
  • Hong-Yun Luo
Article
  • 21 Downloads

Abstract

In order to improve the comprehensive mechanical properties, deep cryogenic treatment (DCT) prior to aging was carried out on friction-stir-welded (FSW) 2198 Al–Li alloy; afterward, the microstructure and tensile properties were characterized by means of optical microscopy (OM), transmission electron microscopy (TEM) and tensile testing. The results show that FSW 2198 alloy through DCT prior to aging (DAT) possesses superior tensile properties than conventional aging treatment (AT). The microstructural analysis reveals that DAT alloy exhibits a finer grain structure, since DCT might effectively alleviate the residual stress in FSW 2198 alloy and thus decrease the driving force for grain coarsening in subsequent aging process. Moreover, DCT generates dislocation multiplication, which provides more preferential nucleation sites for T1 (Al2CuLi) phase during subsequent aging treatment, resulting in high-density fine T1 phases and thin precipitate-free zone within DAT alloy. Such reasonable microstructure leads to DAT alloy possessing better strength-ductility combination compared to AT alloy.

Keywords

Al–Li alloy Friction stir welding Deep cryogenic treatment Tensile properties 

Notes

Acknowledgments

This study was financially supported by the National Key Research and Development Program of China (No. 2016YFB0300901) and the National Natural Science Foundation of China (Nos. U1537212, 51271011 and 51471019).

References

  1. [1]
    Gao C, Gao R, Ma Y. Microstructure and mechanical properties of friction spot welding aluminium–lithium 2A97 alloy. Mater Des. 2015;83:719.CrossRefGoogle Scholar
  2. [2]
    Qin H, Zhang H, Wu H. The evolution of precipitation and microstructure in friction stir welded 2195-T8 Al-Li alloy. Mater Sci Eng A. 2015;626:322.CrossRefGoogle Scholar
  3. [3]
    Yang SL, Shen J, Zhang YA, Li ZH, Li XW, Huang SH, Xiong BQ. Processing maps and microstructural evolution of Al–Cu–Li alloy during hot deformation. Rare Met. 2016.  https://doi.org/10.1007/s12598-016-0851-z.Google Scholar
  4. [4]
    Decreus B, Deschamps A, Geuser FD, Donnadieu P, Sigli C, Weyland M. The influence of Cu/Li ratio on precipitation in Al-Cu–Li–x alloys. Acta Mater. 2013;61(6):2207.CrossRefGoogle Scholar
  5. [5]
    Itoh G, Cui Q, Kanno M. Effects of a small addition of magnesium and silver on the precipitation of T1 phase in an Al–4%Cu–1.1%Li–0.2%Zr alloy. Mater Sci Eng A. 1996;211(1–2):128.CrossRefGoogle Scholar
  6. [6]
    Zhang SF, Zeng WD, Yang WH, Shi CL, Wang HJ. Ageing response of a Al–Cu–Li 2198 alloy. Mater Des. 2014;63(2):368.CrossRefGoogle Scholar
  7. [7]
    Lin Y, Zheng Z. Microstructural evolution of 2099 Al Li alloy during friction stir welding process. Mater Charact. 2017;123:307.CrossRefGoogle Scholar
  8. [8]
    Mohammadi M, Khodabandeh A, Mohammadi S, Paidar M. Microstructure and mechanical properties of joints welded by friction-stir welding in aluminum alloy 7075-T6 plates for aerospace application. Rare Met. 2016.  https://doi.org/10.1007/s12598-016-0692-9.Google Scholar
  9. [9]
    Liu H, Hu Y, Dou C, Sekulic DP. An effect of the rotation speed on microstructure and mechanical properties of the friction stir welded 2060-T8 Al–Li alloy. Mater Charact. 2017;123:9.CrossRefGoogle Scholar
  10. [10]
    Sharma C, Dwivedi DK, Kumar P. Effect of post weld heat treatments on microstructure and mechanical properties of friction stir welded joints of Al–Zn–Mg alloy AA7039. Mater Des. 2013;43:134.CrossRefGoogle Scholar
  11. [11]
    Zhang J, Feng XS, Gao JS, Huang H, Ma ZQ, Guo LJ. Effects of welding parameters and post-heat treatment on mechanical properties of friction stir welded AA2195-T8 Al–Li alloy. J Mater Sci Technol. 2018;34(1):219.CrossRefGoogle Scholar
  12. [12]
    Aydın H, Bayram A, Durgun I. The effect of post-weld heat treatment on the mechanical properties of 2024-T4 friction stir-welded joints. Mater Des. 2010;31(5):2568.CrossRefGoogle Scholar
  13. [13]
    Chen YC, Feng JC, Liu HJ. Stability of the grain structure in 2219-O aluminum alloy friction stir welds during solution treatment. Mater Charact. 2007;58(2):174.CrossRefGoogle Scholar
  14. [14]
    Gao C, Ma Y, Tang LZ, Wang P, Zhang X. Microstructural evolution and mechanical behavior of friction spot welded 2198-T8 Al–Li alloy during aging treatment. Mater Des. 2017;115:224.CrossRefGoogle Scholar
  15. [15]
    Podgornik B, Paulin I, Zajec B, Jacobson S, Leskovsek V. Deep cryogenic treatment of tool steels. J Mater Process Technol. 2016;229:398.CrossRefGoogle Scholar
  16. [16]
    Gavriljuk VG, Theisen W, Sirosh VV, Polshin EV, Kortmann A, Mogilny GS, Petrov YN, Tarusin YV. Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment. Acta Mater. 2013;61(5):1705.CrossRefGoogle Scholar
  17. [17]
    Akhbarizadeh A, Shafyei A, Golozar MA. Effects of cryogenic treatment on wear behavior of D6 tool steel. Mater Des. 2009;30(8):3259.CrossRefGoogle Scholar
  18. [18]
    Li GR, Wang HM, Cai Y, Zhao YT, Wang JJ, Gill PA. Microstructure and mechanical properties of AZ91 magnesium alloy subject to deep cryogenic treatments. Int J Min Met Mater. 2013;20(9):896.CrossRefGoogle Scholar
  19. [19]
    Zhou J, Xu S, Huang S, Meng X, Sheng J, Zhang H, Li J, Sun Y, Boateng E. Tensile properties and microstructures of a 2024-T351 aluminum alloy subjected to cryogenic treatment. Metals. 2016;6(11):279.CrossRefGoogle Scholar
  20. [20]
    Zhang ZX, Qu SJ, Feng AH, Shen J. Achieving grain refinement and enhanced mechanical properties in Ti–6Al–4V alloy produced by multidirectional isothermal forging. Mater Sci Eng A. 2017;692:127.CrossRefGoogle Scholar
  21. [21]
    Monica P, Bravo PM, Cardenas D. Deep cryogenic treatment of HPDC AZ91 magnesium alloys prior to aging and its influence on alloy microstructure and mechanical properties. J Mater Process Technol. 2017;239:297.CrossRefGoogle Scholar
  22. [22]
    Ma Y, Zhou X, Thompson GE, Hashimoto T, Thomson P, Fowles M. Distribution of intermetallics in an AA 2099-T8 aluminium alloy extrusion. Mater Chem Phys. 2011;126(1–2):46.CrossRefGoogle Scholar
  23. [23]
    Li H, Tang Y, Zeng Z, Zheng Z, Zheng F. Effect of ageing time on strength and microstructures of an Al–Cu–Li–Zn–Mg–Mn–Zr alloy. Mater Sci Eng A. 2008;498(1–2):314.CrossRefGoogle Scholar
  24. [24]
    Huang JC, Ardell AJ. Addition rules and the contribution of δ′ precipitates to strengthening of aged Al–Li–Cu alloys. Acta Metall. 1988;36(11):2995.CrossRefGoogle Scholar
  25. [25]
    Singh S, Goel DB. Influence of thermomechanical ageing on tensile properties of 2014 aluminium alloy. J Mater Sci. 1990;25(9):3894.CrossRefGoogle Scholar
  26. [26]
    Zhang X, Zhang L, Wu G, Liu W, Shi C, Tao J, Sun J. Microstructural evolution and mechanical properties of cast Al–2Li–2Cu–0.5 Mg–0.2Zr alloy during heat treatment. Mater Charact. 2017;132:312.CrossRefGoogle Scholar
  27. [27]
    Woo W, Choo H, Brown DW, Vogel SC, Liaw PK, Feng Z. Texture analysis of a friction stir processed 6061-T6 aluminum alloy using neutron diffraction. Acta Mater. 2006;54(15):3871.CrossRefGoogle Scholar
  28. [28]
    Solanki KN, Jordon JB, Whittington W, Rao H, Hubbard CR. Structure-property relationships and residual stress quantification of a friction stir spot welded magnesium alloy. Scr Mater. 2012;66(10):797.CrossRefGoogle Scholar
  29. [29]
    Liu C, Yi X. Residual stress measurement on AA6061-T6 aluminum alloy friction stir butt welds using contour method. Mater Des. 2013;46(4):366.CrossRefGoogle Scholar
  30. [30]
    Kim SJ, Kim D, Lee K, Cho HH, Han HN. Residual-stress-induced grain growth of twinned grains and its effect on formability of magnesium alloy sheet at room temperature. Mater Charact. 2015;109:88.CrossRefGoogle Scholar
  31. [31]
    Srolovitz DJ, Grest GS, Anderson MP. Computer simulation of grain growth-V. Abnormal grain growth. Acta Metall. 1985;33(12):2233.CrossRefGoogle Scholar
  32. [32]
    Araghchi M, Mansouri H, Vafaei R, Guo Y. A novel cryogenic treatment for reduction of residual stresses in 2024 aluminum alloy. Mater Sci Eng A. 2017;689:48.CrossRefGoogle Scholar
  33. [33]
    Fu R, Yuan C, Wang Y, Sang D, Li Y, Jing L, Zhang X. Effects of deep cryogenic treatment on the microstructure and mechanical properties of commercial pure zirconium. J Alloys Compd. 2015;619:513.CrossRefGoogle Scholar
  34. [34]
    Xu LY, Zhu J, Jing HY, Zhao L, Lv XQ, Han YD. Effects of deep cryogenic treatment on the residual stress and mechanical properties of electron-beam-welded Ti–6Al–4V joints. Mater Sci Eng A. 2016;673:503.CrossRefGoogle Scholar
  35. [35]
    Cassada WA, Shiflet GJ, Starke EA. Mechanism of Al2CuLi (T1) nucleation and growth. Metall Trans A. 1991;22(2):287.CrossRefGoogle Scholar
  36. [36]
    Araullo PV, Gault B, Geuser FD, Deschamps A, Cairney JM. Microstructural evolution during ageing of Al–Cu–Li–x alloys. Acta Mater. 2014;66(1):199.CrossRefGoogle Scholar
  37. [37]
    Deng YJ, Huang GJ, Cao LF, Wu XD, Huang L, Xia MY, Liu Q. Improvement of strength and ductility of Al–Cu–Li alloy through cryogenic rolling followed by aging. Trans Nonferrous Met Soc. 2017;27(9):1920.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina
  2. 2.Chinalco Research Institute of Science and TechnologyBeijingChina

Personalised recommendations