Advertisement

Rare Metals

pp 1–7 | Cite as

Photoelectrochemical properties of BiVO4 thin films with NaOH chemical treatment

  • Dong-Dong Lv
  • Jiao-Feng Liu
  • Zheng Zhang
  • Ying-You Ma
  • Yan Liang
  • Zhi-Tai Zhou
  • Wei-Chang HaoEmail author
Article
  • 21 Downloads

Abstract

BiVO4 thin films were prepared by a mature and simple electrochemical deposition method on F-doped SnO2 substrate electrode (FTO). The influence of a chemical treatment using sodium hydroxide (NaOH) on the photoelectrochemical properties of BiVO4 thin films was studied. It was found that NaOH can etch the crystal surface of BiVO4, which leads to the increase in specific surface area and improved photoelectrochemical activity. The photocurrent density of the BiVO4 thin films showed an enhancement of photoelectronic current from 0.50 to 0.65 mA·cm−2 at 1.23 V (vs. RHE) after the treatment for 5 h by NaOH, which supplies a stronger potential for H2O oxidation.

Keywords

BiVO4 Photoelectrochemical Surface treatment NaOH 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51672018 and 51472016) and Beijing Natural Science Foundation (No. Z180007).

References

  1. [1]
    Zhou M, Zhang S, Sun Y, Wu C, Wang M, Xie Y. C-oriented and 010 facets exposed BiVO4 nanowall films: template-free fabrication and their enhanced photoelectrochemical properties. Chem An Asian J. 2010;5(12):2515.CrossRefGoogle Scholar
  2. [2]
    Yun HN, Iwase A, Kudo A, Amal R. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett. 2010;1(17):2607.CrossRefGoogle Scholar
  3. [3]
    Berglund SP, Flaherty DW, Hahn NT, Bard AJ, Mullins CB. Photoelectrochemical oxidation of water using nanostructured BiVO4 films. J Phys Chem C. 2015;115(9):3794.CrossRefGoogle Scholar
  4. [4]
    Park HS, Kweon KE, Ye H, Paek E. Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation. J Phys Chem C. 2015;115(9):17870.Google Scholar
  5. [5]
    Wang S, Chen P, Yun JH, Hu Y, Wang L. An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew Chem Int Ed. 2017;56(29):8500.CrossRefGoogle Scholar
  6. [6]
    Grigioni I, Abdellah M, Corti A, Dozzi MV, Hammarström L, Selli E. Photoinduced charge-transfer dynamics in WO3/BiVO4 photoanodes probed through midinfrared transient absorption spectroscopy. J Am Chem Soc. 2018;140(43):14042.CrossRefGoogle Scholar
  7. [7]
    Liang Y, Messinger J. Improving BiVO4 photoanodes for solar water splitting through surface passivation. Phys Chem Chem Phys. 2014;16(24):12014.CrossRefGoogle Scholar
  8. [8]
    Song J, Seo MJ, Lee TH, Jo YR, Lee J, Kim TL, Kim SY, Jeong SY, An H, Kim S, Lee BH, Lee D, Jang HW, Kim BJ, Lee S. Tailoring crystallographic orientations to substantially enhance charge separation efficiency in anisotropic BiVO4 photoanodes. ACS Catal. 2018;8(7):5952.CrossRefGoogle Scholar
  9. [9]
    Yan GY, Zheng LP, Xie LS, Weng XL, Ye JH. Nature of Ag–Bi-codoped TiO2 visible light photocatalyst. Rare Met. 2011;30(S1):259.CrossRefGoogle Scholar
  10. [10]
    Park Y, Mcdonald KJ, Choi KS. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev. 2013;42(6):2321.CrossRefGoogle Scholar
  11. [11]
    Sayama K, Nomure A, Arai T, Sugita T, Abe R, Yanagida M, Qi T, lwasaki Y, Abe Y, Sugihara H. Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. J Phys Chem B. 2006;110(23):11352.CrossRefGoogle Scholar
  12. [12]
    Abdi FF, Firet N. Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping. Chemcatchem. 2013;5:490.CrossRefGoogle Scholar
  13. [13]
    Zhang T, Shao X, Zhang DF, Pu XP, Tang YX, Yin J, Ge B, Li WZ. Synthesis of direct Z-scheme g-C3N4/Ag2VO2PO4 photocatalysts with enhanced visible light photocatalytic activity. Sep Purif Technol. 2018;195:332.CrossRefGoogle Scholar
  14. [14]
    Wang Q, Hisatomi T, Suzuki Y, Pan Z, Seo J, Katayama M, Minegishi T, Nishiyama H, Takata T, Seki K, Kudo A, Yamada T, Domen K. Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J Am Chem Soc. 2017;139:1675.CrossRefGoogle Scholar
  15. [15]
    Cooper JK, Gul S, Toma FM. Electronic structure of monoclinic BiVO4. Chem Mater. 2014;26(18):5365.CrossRefGoogle Scholar
  16. [16]
    Gao M, Zhang D, Pu X, Ma H, Su C, Gao X, Dou J. Surface decoration of BiOBr with BiPO4 nanoparticles to build heterostructure photocatalysts with enhanced visible-light photocatalytic activity. Sep Purif Technol. 2016;170:183.CrossRefGoogle Scholar
  17. [17]
    Zhang W, Chen X, Han Y, Yao S. Effect of SnO2 addition on phase transformation of TiO2 photocatalyst prepared by sol–gel method. Rare Met. 2011;30(1):229.CrossRefGoogle Scholar
  18. [18]
    Oshikiri M, Boero M. Water molecule adsorption properties on the BiVO4 (100) surface. J Phys Chem B. 2006;110(18):9188.CrossRefGoogle Scholar
  19. [19]
    Luo Y, Tan G, Dong G, Ren H, Xia A. A comprehensive investigation of tetragonal Gd-doped BiVO4 with enhanced photocatalytic performance under sun-light. Appl Surf Sci. 2016;364:156.CrossRefGoogle Scholar
  20. [20]
    Fu X, Xie M, Peng L, Jing L. Effective visible-excited charge separation in silicate-bridged ZnO/BiVO4 nanocomposite and its contribution to enhanced photocatalytic activity. ACS Appl Mater Interfaces. 2014;6(21):18550.CrossRefGoogle Scholar
  21. [21]
    Xiao S, Chen H, Yang Z, Long X, Wang Z, Zhu Z, Qu Y, Yang S. Origin of the different photoelectrochemical performance of mesoporous BiVO4 photoanodes between the BiVO4 and the FTO side illumination. J Phys Chem C. 2015;119:23350.CrossRefGoogle Scholar
  22. [22]
    Luan SL, Duan A, Li A, Jiang WS, Gao X, Hua SX, Miao X, Wen YJ, Sun ZC. Enhancing photocatalytic performance by constructing ultrafine TiO2 nanorods/g-C3N4 nanosheets heterojunction for water treatment. Sci Bull. 2018;63(11):683.CrossRefGoogle Scholar
  23. [23]
    Zachäus C, Abdi FF, Peter LM, van de Krol R. Photocurrent of BiVO4 is limited by surface recombination, not surface catalysis. Chem Sci. 2017;8(5):3712.CrossRefGoogle Scholar
  24. [24]
    Xu H, Liu SQ, Zhou S, Yuan TZ, Wang X, Tang X, Yin J, Tao HJ. Morphology and photocatalytic performance of nano-sized TiO2 prepared by simple hydrothermal method with different pH values. Rare Met. 2018;37(9):750.CrossRefGoogle Scholar
  25. [25]
    Long MC, Cai WM, Kisch H. Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-Co3O4. J Phys Chem C. 2008;112(2):548.CrossRefGoogle Scholar
  26. [26]
    Kim TW, Choi K-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science. 2014;343(6174):990.CrossRefGoogle Scholar
  27. [27]
    Zhang L, Lin C, Valev VK, Reisner E, Steiner U, Baumberg JJ. Plasmonic enhancement in BiVO4 photonic crystals for efficient Water Splitting. Small. 2014;10:3970.CrossRefGoogle Scholar
  28. [28]
    Nikam S, Joshi S. Irreversible phase transition in BiVO4 nanostructures synthesized by a polyol method and enhancement in photo degradation of methylene blue. Rsc Adv. 2016;6:107463.CrossRefGoogle Scholar
  29. [29]
    Thalluri SM, Rojas RM, Rivera OD, Hernandez S, Russo N, Rodil SE. Chemically induced porosity on BiVO4 films produced by double magnetron sputtering to enhance the photo-electrochemical response. Phys Chem Chem Phys. 2015;17(27):17821.CrossRefGoogle Scholar
  30. [30]
    Li HQ, Cui YM, Hong WS, Hua L, Tao DL. Photodegradation of methyl orange by BiOI-sensitized TiO2. Rare Met. 2012;31(6):604.CrossRefGoogle Scholar
  31. [31]
    Shen J, Meng YL, Xin G. CdS/TiO2 nanotubes hybrid as visible light driven photocatalyst for water splitting. Rare Met. 2011;30(S1):280.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PhysicsBeihang UniversityBeijingChina

Personalised recommendations