Rare Metals

pp 1–6 | Cite as

Manufacturing and characterizing of CCTO/SEBS dielectric elastomer as capacitive strain sensors

  • Yi-Yang Zhang
  • Jie Zhang
  • Gen-Lin Wang
  • Zhi-Feng Wang
  • Zhi-Wei Luo
  • Ming ZhangEmail author


Calcium copper titanate (CCTO)/polystyrene–polyethylene–polybutylene–polystyrene (SEBS) dielectric elastomers were prepared via blending method. A capacitive strain sensor using CCTO/SEBS as dielectric layer and polyaniline–dodecylbenzensulfonic acid (PANI–DBSA)/SEBS as electrodes was designed and manufactured by thermoforming process. X-ray diffractometer (XRD), scanning electron microscopy (SEM) and Raman spectra analyses were carried out; no impurities were found in the composite and CCTO particles were well dispersed. The dielectric tests showed that the samples filled with 20 wt% CCTO have their permittivity improved by 70%. The capacitive strain sensors have a stabilized capacitance variety range at different strain ranges or stretch speeds, and could remain synchronized after 500-time-stretching, showing high reproducibility.


Calcium copper titanate Polystyrene–polyethylene–polybutylene–polystyrene Capacitive strain sensor Dielectric constant Strain–capacitance value 



This study was financially supported by the National Natural Science Foundation of China (No. 51403181).


  1. [1]
    Amjadi M, Kyung KU, Park I, Sitti M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater. 2016;26(11):1678.CrossRefGoogle Scholar
  2. [2]
    Cohen DJ, Mitra D, Peterson K, Maharbiz MM. A highly elastic, capacitive strain gauge based percolating nanotube network. Nano Lett. 2012;12(4):1821.CrossRefGoogle Scholar
  3. [3]
    Kim SR, Kim JH, Park JW. Wearable and transparent capacitive strain sensor with high sensitivity based on patterned Ag nanowire networks. ACS Appl Mater Inter. 2017;9(31):26407.CrossRefGoogle Scholar
  4. [4]
    Trung TQ, Lee NE. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater. 2016;28(22):4338.CrossRefGoogle Scholar
  5. [5]
    Shi G, Zhao ZH, Pai JH, Lee L, Zhang LQ, Stevenson C, Ishara K, Zhang RJ, Zhu HW, Ma J. Highly sensitive, wearable, durable strain sensors and stretchable conductors using graphene/silicon rubber composites. Adv Funct Mater. 2016;26(42):76114.CrossRefGoogle Scholar
  6. [6]
    Zheng YJ, Li YL, Dai K, Liu M, Zhou M, Zheng GQ, Liu CT, Shen CY. Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors. Composites A. 2017;101:41.CrossRefGoogle Scholar
  7. [7]
    Gong XX, Fei GT, Fu WB, Fang M, Gao XD, Zhong BN, Zhang LD. Flexible strain sensor with high performance based on PANI/PDMS films. Org Electron. 2017;47:51.CrossRefGoogle Scholar
  8. [8]
    Amjadi M, Pichitpajongkit A, Ryu S, Korea I. Piezoresistivity of Ag NWS-PDMS nanocomposite. In: 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, USA; 2014, 785.Google Scholar
  9. [9]
    Kollosche M, Stoyanov H, Laflamme S, Kofod G. Strongly enhanced sensitivity in elastic capacitive strain sensors. J Mater Chem. 2011;21(23):8292.CrossRefGoogle Scholar
  10. [10]
    Babu S, Singh K, Govindan A. Dielctric properties of CaCu3Ti4O12–silicone resin composites. Appl Phys A. 2012;107(3):697.CrossRefGoogle Scholar
  11. [11]
    Goel P, Singh JP. Fabrication of silver nanorods embedded in PDMS film and its application for strain sensing. J Phys D Appl Phys. 2014;48(44):445303.CrossRefGoogle Scholar
  12. [12]
    Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano. 2014;8(5):5154.CrossRefGoogle Scholar
  13. [13]
    Wang X, Pang SL, Yang JH, Yang F. Structure and properties of SEBS/PP/OMMT nanocomposites. Trans Nonferr Met Soc. 2006;16(s2):s524.CrossRefGoogle Scholar
  14. [14]
    Calisi N, Giuliani A, Alderighi M, Schnorr JM, Swager TM, Francesco FD, Pucci A. Factors affecting he dispersion of MWCNTs in electrically conducting SEBS nanocomposites. Eur Polym J. 2013;49(6):1471.CrossRefGoogle Scholar
  15. [15]
    Kim MH, Hong SM, Koo CM. Electric actuation properties of SEBS/CB and SEBS/SWCNT nanocomposite films with different conductive fillers. Macromol Res. 2012;20(1):59.CrossRefGoogle Scholar
  16. [16]
    Duan L, Wang GL, Zhang YY, Zhang YN, Wei YY, Wang ZF, Zhang M. High dielectric and actuated properties of silicone dielectric elastomers filled with magnesium-doped calcium copper titanate particles. Polym Compos. 2016;39(3):691.CrossRefGoogle Scholar
  17. [17]
    Li T, Chen J, Dai HY, Liu DW, Xiang HW, Chen ZP. Dielectric properties of CaCu3Ti4O12–silicone rubber composites. J Mater Sci Mater Electron. 2015;26(1):312.CrossRefGoogle Scholar
  18. [18]
    Torabi S, Cherry M, Duijnstee EA, Corre VML, Qiu L, Hummelen JC, Palasantzas G, Koster LJA. Rough electrode creates excess capacitance in thin-film capacitors. ACS Appl Mater Interfaces. 2017;9(32):27290.CrossRefGoogle Scholar
  19. [19]
    Stoyanov H, Kollosche M, Risse S, Wache R, Kofod G. Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles. Adv Mater. 2013;25(4):578.CrossRefGoogle Scholar
  20. [20]
    Pham GT, Park Y, Liang Z, Zhang C, Wang B. Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Compos Part B. 2008;39(1):209.CrossRefGoogle Scholar
  21. [21]
    Rogers J, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science. 2010;327(5973):1603.CrossRefGoogle Scholar
  22. [22]
    Rogers J, Huang Y. A curvy, stretchy future for electronics. Proc Natl Acad Sci USA. 2009;106(27):10875.CrossRefGoogle Scholar
  23. [23]
    Yu Z, Zhang Q, Li L, Chen Q, Niu X, Liu J, Pei Q. Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater. 2011;23(5):664.CrossRefGoogle Scholar
  24. [24]
    Zhang Z, Liao Q, Zhang Z, Zhang G, Li P, Lu S, Liua S, Zhang Y. Highly efficient piezotronic strain sensors with symmetrical Schottky contacts on the monopolar surface of ZnO nanobelts. Nanoscale. 2015;7(5):1796.CrossRefGoogle Scholar
  25. [25]
    Li C, Thostenson ET, Chou T. Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol. 2008;68(6):1227.CrossRefGoogle Scholar
  26. [26]
    Mannsfeld S, Tee B, Stoltenberg R, Chen VC, Barman S, Muir B, Sokolov A, Reese C, Bao Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater. 2010;9(10):859.CrossRefGoogle Scholar
  27. [27]
    Rosset S, Shea HR. Flexible and stretchable electrodes for dielectric elastomer actuators. Appl Phys A. 2013;110(2):281.CrossRefGoogle Scholar
  28. [28]
    Jinno H, Kuribara K, Kaltenbrunner M, Matsuhisa N, Someya T, Yokota T, Sekitani T. Printable elastic conductors with a high conductivity for electronic textile applications. Nat Commun. 2015;6:7461.CrossRefGoogle Scholar
  29. [29]
    Choi TY, Hwang BU, Kim BY, Trung TQ, Nam YH, Kim DN, Eom K, Lee NE. Stretchable, transparent, and stretch-unresponsive capacitive touch sensor array with selectively patterned silver nanowires/reduced graphene oxide electrodes. ACS Appl Mater Interfaces. 2017;9(21):18022.CrossRefGoogle Scholar
  30. [30]
    Kim J, Kwon S, Ihm DW. Synthesis and characterization of organic soluble polyaniline prepared by one-step emulsion polymerization. Curr Appl Phys. 2007;7(2):205.CrossRefGoogle Scholar
  31. [31]
    Kolev N, Bontchev RP, Jacobson AJ, Popov VN, Hadjiev VG, Litvinchuk AP, Ilieve MN. Raman spectroscopy of CaCu3Ti4O12. Phys Rev B. 2002;66(13):132102.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of System InformaticsKobe UniversityKobeJapan
  2. 2.School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouChina
  3. 3.Test Center of Yangzhou UniversityYangzhouChina

Personalised recommendations