Rare Metals

, Volume 38, Issue 1, pp 20–28 | Cite as

Correlation of microstructure and magnetic properties in Sm(CobalFe0.1Cu0.1Zr0.033)6.93 magnets solution-treated at different temperatures

  • Cheng Xu
  • Hui WangEmail author
  • Tian-Li Zhang
  • Alexander Popov
  • Raghavan Gopalan
  • Cheng-Bao Jiang


The correlation of microstructure and magnetic properties in Sm(CobalFe0.1Cu0.1Zr0.033)6.93 magnets solution-treated at different temperatures was systematically investigated. It is found that the magnets solution-treated at 1219 °C possess a single 1:7H phase, exhibiting the homogeneous cellular structure during further aging treatment, leading to the optimum magnetic properties. However, for the magnets solution-treated at 1211 and 1223 °C, 2:17H or 1:5H secondary phase will also form besides 1:7H main phase, which cannot transform into cellular structure, thus deteriorating the magnetic properties greatly. The irreversible magnetization investigations with recoil loops also propose a non-uniform pinning in the magnets induced by the secondary precipitates. At proper solution temperature, Zr is supposed to occupy the Fe–Fe dumbbell sites in the form of Zr-vacancy pairs, leading to the minimum c/a ratio and thus stabilizing the 1:7H phase. Finally, Sm(CobalFe0.1Cu0.1Zr0.033)6.93 magnets with the maximum energy product and intrinsic coercivity at 550 °C up to 60.73 kJ·m−3 and 553.88 kA·m−1 were prepared by powder metallurgy method.


Sm2Co17 Solution treatment Phase constitution Demagnetization curve squareness 



This study was financially supported by the National Natural Science Foundation of China (No. 51471016), the Natural Science Foundation of Beijing (No. 2151002), and the BRICS STI Framework Program (Nos. 51761145026 and 17-52-80072). The author Raghavan Gopalan from India thanks Department of Science and Technology, Govt of India, for supporting the work under DST-BRICS proposal reg. No 258.


  1. [1]
    Pathak AK, Khan M, Gschneidner KA, McCallum RW, Zhou L, Sun K, Dennis KW, Zhou C, Pinkerton FE, Kramer MJ. Cerium: an unlikely replacement of dysprosium in high performance Nd–Fe–B permanent magnets. Adv Mater. 2015;27(16):2663.CrossRefGoogle Scholar
  2. [2]
    Gutfleisch O, Müller KH, Khlopkov K, Wolf M, Yan A, Schäfer R, Gemming T, Schultz L. Evolution of magnetic domain structures and coercivity in high-performance SmCo 2:17-type permanent magnets. Acta Mater. 2006;54(4):997.CrossRefGoogle Scholar
  3. [3]
    Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar S, Liu JP. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater. 2011;23(7):821.CrossRefGoogle Scholar
  4. [4]
    Kumar S, Kumar R, Chakarvarti S. Morphological and magnetic characterization of electrodeposited cobalt nanowires. J Mater Sci. 2004;39(8):2951.CrossRefGoogle Scholar
  5. [5]
    Saini D, Chauhan R, Kumar S. Effects of annealing on structural and magnetic properties of template synthesized cobalt nanowires useful as data storage and nano devices. J Mater Sci Mater Electron. 2014;25(1):124.CrossRefGoogle Scholar
  6. [6]
    An S, Zheng L, Zhang T, Jiang C. Bulk anisotropic nanocrystalline SmCo6.6Ti0.4 permanent magnets. Scr Mater. 2013;68(6):432.CrossRefGoogle Scholar
  7. [7]
    Ma Z, Zhang T, Jiang C. A facile synthesis of high performance SmCo5 nanoparticles. Chem Eng. 2015;264:610.CrossRefGoogle Scholar
  8. [8]
    Ma Z, Zhang T, Jiang C. Exchange-coupled SmCo5/Co nanocomposites synthesized by a novel strategy. RSC Adv. 2015;5(108):89128.CrossRefGoogle Scholar
  9. [9]
    Hadjipanayis GC. Magnetic hardening in Zr-substituted 2:17 rare-earth permanent magnets. J Appl Phys. 1984;55(6):2091.CrossRefGoogle Scholar
  10. [10]
    Ray A. The development of high energy product permanent magnets from 2:17 RE-TM alloys. IEEE Trans Magn. 1984;20(5):1614.CrossRefGoogle Scholar
  11. [11]
    Zhang XF, Zhang WK, Li YF, Liu YL, Li ZB, Ma Q, Shi MF, Liu F. Magnetic properties of melt-spun MM–Fe–B ribbons with different wheel speeds and mischmetal contents. Rare Met. 2017;36(12):992.CrossRefGoogle Scholar
  12. [12]
    Yu N, Zhu M, Fang Y, Song L, Sun W, Song K, Wang Q, Li W. The microstructure and magnetic characteristics of Sm(CobalFe0.1Cu0.09Zr0.03)7.24 high temperature permanent magnets. Scr Mater. 2017;132:44.CrossRefGoogle Scholar
  13. [13]
    Zhang T, Liu H, Liu J, Jiang C. 2:17-type SmCo quasi-single-crystal high temperature magnets. Appl Phys Lett. 2015;106(16):162403.CrossRefGoogle Scholar
  14. [14]
    Zhang T, Liu H, Ma Z, Jiang C. Single crystal growth and magnetic properties of 2:17-type SmCo magnets. J Alloys Compd. 2015;637:637.Google Scholar
  15. [15]
    Wang Q, Zheng L, An S, Zhang T, Jiang C. Thermal stability of surface modified Sm2Co17-type high temperature magnets. J Magn Magn Mater. 2013;331:245.CrossRefGoogle Scholar
  16. [16]
    Mishra RK, Thomas G, Yoneyama T, Fukuno A, Ojima T. Microstructure and properties of step aged rare earth alloy magnets. J Appl Phys. 1981;52(3):2517.CrossRefGoogle Scholar
  17. [17]
    Rabenberg L, Mishra R, Thomas G. Microstructures of precipitation-hardened SmCo permanent magnets. J Appl Phys. 1982;53(3):2389.CrossRefGoogle Scholar
  18. [18]
    Jiang C, Hua H, Wang J. Thermomagnetic coupling martensitic transformation and associated physical effects. Chin J Rare Met. 2017;41(5):505.Google Scholar
  19. [19]
    Romero S, de Campos M, de Castro J, Moreira A, Landgraf F. Microstructural changes during the slow-cooling annealing of nanocrystalline SmCo 2:17 type magnets. J Alloys Compd. 2013;551:312.CrossRefGoogle Scholar
  20. [20]
    Gopalan R, Ohkubo T, Hono K. Identification of the cell boundary phase in the isothermally aged commercial Sm(Co0.725Fe0.1Cu0.12Zr0.04)7.4 sintered magnet. Scr Mater. 2006;54(7):1345.CrossRefGoogle Scholar
  21. [21]
    Gopalan R, Hono K, Yan A, Gutfleisch O. Direct evidence for Cu concentration variation and its correlation to coercivity in Sm(Co0.74Fe0.1Cu0.12Zr0.04)7.4 ribbons. Scr Mater. 2009;60(9):764.CrossRefGoogle Scholar
  22. [22]
    Xiong X, Ohkubo T, Koyama T, Ohashi K, Tawara Y, Hono K. The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe. Acta Mater. 2004;52(3):737.CrossRefGoogle Scholar
  23. [23]
    Goll D, Kronmüller H, Stadelmaier H. Micromagnetism and the microstructure of high-temperature permanent magnets. J Appl Phys. 2004;96(11):6534.CrossRefGoogle Scholar
  24. [24]
    Mori Y, Umeda T, Kimura Y. Phase transformation at high temperature and coercivity of Sm (Co, Cu, Fe, Zr)7-9 magnet alloys. IEEE Trans Magn. 1987;23(5):2702.CrossRefGoogle Scholar
  25. [25]
    Livingston J, Martin D. Microstructure of aged Sm(Co, Cu, Fe)7 magnets. J Appl Phys. 1977;48(3):1350.CrossRefGoogle Scholar
  26. [26]
    Maury C, Rabenberg L, Allibert C. Genesis of the cell microstructure in the Sm (Co, Fe, Cu, Zr) permanent magnets with 2:17 type. Phys Status Solidi A. 1993;140(1):57.CrossRefGoogle Scholar
  27. [27]
    Fidler J, Bernardi J, Skalicky P. Analytical electron microscope study of high-and low-coercivity SmCo 2:17 magnets. MRS Online Proc Libr. 1987;96:181.CrossRefGoogle Scholar
  28. [28]
    Fidler J, Bernardi J, Ohashi K, Tawara Y. Analytical electron microscopy of Sm (Co, Fe, Cu, Zr)9. IEEE Trans Magn. 1990;26(5):1385.CrossRefGoogle Scholar
  29. [29]
    Ray A. Metallurgical behavior of Sm (Co, Fe, Cu, Zr)z alloys. J Appl Phys. 1984;55(6):2094.CrossRefGoogle Scholar
  30. [30]
    Ray AE, Soffa WA, Blachere JR, Zhang B. Cellular microstructure development in Sm(Co,Fe,Cu,Zr)8.35 alloys. IEEE Trans Magn. 1987;23(5):2711.CrossRefGoogle Scholar
  31. [31]
    Ray A. A revised model for the metallurgical behavior of 2:17-type permanent magnet alloys. J Appl Phys. 1990;67(9):4972.CrossRefGoogle Scholar
  32. [32]
    Gopalan R, Sastry T, Singh A, Chandrasekaran V. X-ray diffraction and microstructural studies in 2:17 type Sm–Co magnetic alloys containing Fe, Cu, and Zr. J Mater Res. 1999;14(06):2430.CrossRefGoogle Scholar
  33. [33]
    Gopalan R, Muraleedharan K, Sastry T, Singh A, Joshi V, Rao DS, Chandrasekaran V. Studies on structural transformation and magnetic properties in Sm2Co17 type alloys. J Mater Sci. 2001;36(17):4117.CrossRefGoogle Scholar
  34. [34]
    Fang Y, Chang H, Guo Z, Liu T, Li X, Li W, Chang W, Han B. Magnetic microstructures of phase-separated Sm–Co 2:17-type sintered magnets. J Alloys Compd. 2008;462(1):376.CrossRefGoogle Scholar
  35. [35]
    Horiuchi Y, Hagiwara M, Okamoto K, Kobayashi T, Endo M, Nakamura T, Sakurada S. Effects of solution treated temperature on the structural and magnetic properties of iron-rich Sm(CoFeCuZr)z sintered magnet. IEEE Trans Magn. 2013;49(7):3221.CrossRefGoogle Scholar
  36. [36]
    Machida H, Fujiwara T, Kamada R, Morimoto Y, Takezawa M. The high squareness Sm-Co magnet having H cb = 10.6 kOe at 150 °C. AIP Adv. 2017;7(5):056223.CrossRefGoogle Scholar
  37. [37]
    Liu J, Hadjipanayis G. Demagnetization curves and coercivity mechanism in Sm(CoFeCuZr)z magnets. J Magn Magn Mater. 1999;195(3):620.CrossRefGoogle Scholar
  38. [38]
    Nagamine L, Rechenberg H, Ray A. Fe site populations in Sm2 (Co, Fe) 17 and Sm (Co, Fe, Cu, Zr)8.35 alloys. J Magn Magn Mater. 1990;89(3):270.CrossRefGoogle Scholar
  39. [39]
    Feutrill E, McCormick P, Street R. Magnetization behaviour in exchange-coupled-Fe. J Phys D Appl Phys. 1996;29(9):2320.CrossRefGoogle Scholar
  40. [40]
    Li Z, Zhang M, Shen B, Sun J. Non-uniform magnetization reversal in nanocomposite magnets. Appl Phys Lett. 2013;102(10):102405.CrossRefGoogle Scholar
  41. [41]
    Yan A, Bollero A, Gutfleisch O, Müller KH. Microstructure and magnetization reversal in nanocomposite SmCo5/Sm2Co17 magnets. J Appl Phys. 2002;91(4):2192.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina
  2. 2.M. N. Miheev Institute of Metal PhysicsUral Branch of Russian Academy of SciencesEkaterinburgRussia
  3. 3.International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)IITM Research ParkChennaiIndia

Personalised recommendations