Rare Metals

, Volume 37, Issue 12, pp 1076–1081 | Cite as

Synthesis and densification of zirconium diboride prepared by carbothermal reduction

  • Tao Gui
  • Xing-Ming Wang
  • Lei Yang
  • Yu-Yang Liu
  • Xue Bai
  • Li-Jun Wang
  • Bo Song


Using boron powder as additive, the preparation of zirconium diboride (ZrB2) by carbothermal reduction was investigated. The results show that the carbothermal reduction cannot be completely done until the temperature is more than 1900 °C. The ZrB2 particles prepared without boron (B) additive at 1900 °C for 3 h are rodlike and show a preferential grain growth along [001] direction. B additive changes the heat effect of the raw materials. With B additive, the morphology of ZrB2 particles turns to be regular shape. The average particle size is about 3.6 μm with 2.5 wt% B additives. With more B additive, the shape of particles turns to be round like and the average particle size is decreased to 2.3 μm when 5 wt% B is added. The existence of oxides in grain boundary is a key factor to keep ZrB2 ceramic from deep densification. Using ZrB2 powder prepared with 5 wt% B additives, by controlling carbon content in ZrB2 powder, ZrB2 ceramic with 93% relative density is hot-pressed.


Zirconium diboride Carbothermal reduction Grain growth Morphology control Deep densification 



This work was financially supported by the National Natural Science Foundation of China (No. 51674035).


  1. [1]
    Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA. Refractory diborides of zirconium and hafnium. J Am Ceram Soc. 2007;90(5):1347.CrossRefGoogle Scholar
  2. [2]
    Gasch MJ, Ellerby DT, Johnson SM. Ultra high temperature ceramic composites. In: Bansal NP, editor. Handbook of Ceramic Composites. New York: Springer; 2005; 197.CrossRefGoogle Scholar
  3. [3]
    Mroz C. Zirconium diboride. Am Ceram Soc Bull. 1995;74(6):164.Google Scholar
  4. [4]
    Qiu H, Guo W, Zou J, Zhang GJ. ZrB2 powders prepared by boro/carbothermal reduction of ZrO2: the effects of carbon source and reaction atmosphere. Powder Technol. 2012;217(2):462.CrossRefGoogle Scholar
  5. [5]
    Jung EY, Kim JH, Jung SH, Choi SC. Synthesis of ZrB2 powders by carbothermal and borothermal reduction. J Alloys Compd. 2012;538(42):164.CrossRefGoogle Scholar
  6. [6]
    Guo W, Zhang G. New borothermal reduction route to synthesize submicrometric ZrB2 powders with low oxygen content. J Am Ceram Soc. 2011;94(11):3702.CrossRefGoogle Scholar
  7. [7]
    Guo WM, Tan DW, Zhang ZL, Xie H, Wu LX, Lin HT. Synthesis of fine ZrB2 powders by new borothermal reduction of coarse ZrO2 powders. Ceram Int. 2016;42(13):15087.CrossRefGoogle Scholar
  8. [8]
    Çamurlu HE, Maglia F. Preparation of nano-size ZrB2 powder by self-propagating high-temperature synthesis. J Eur Ceram Soc. 2009;29(8):1501.CrossRefGoogle Scholar
  9. [9]
    La PQ, Han SB, Lu XF, Wei YP. Effects of the diluent content on microstructure of submicron ZrB2 by combustion synthesis. J Inorg Mater. 2014;29(2):191.CrossRefGoogle Scholar
  10. [10]
    Ji G, Ji H, Li M, Li X, Sun X. Synthesis of zirconium diboride nano-powders by novel complex sol–gel technology at low temperature. J Sol–Gel Sci Technol. 2014;69(1):114.CrossRefGoogle Scholar
  11. [11]
    Cao YN, Du S, Wang JK, Zhang HJ, Li FL, Lu LL, Zhang SW, Deng XG. Preparation of zirconium diboride ultrafine hollow spheres by a combined sol–gel and boro/carbothermal reduction technique. J Sol–Gel Sci Technol. 2014;72(1):130.CrossRefGoogle Scholar
  12. [12]
    Ji H, Yang M, Li M, Ji G, Fan H, Sun X. Low-temperature synthesis of ZrB2 nano-powders using a sorbitol modified sol-gel processing route. Adv Powder Technol. 2014;25(3):910.CrossRefGoogle Scholar
  13. [13]
    Graves JP, Chapman IT, Coda S, Johnson T, Lennholm M. Low temperature synthesis of ZrB2 powder synergistically by borothermal and carbothermal reduction. Rare Met. 2011;30(1):548.Google Scholar
  14. [14]
    Baik S, Becher PF. Effect of oxygen on the densification of TiB2. J Am Ceram Soc. 2005;70(8):527.CrossRefGoogle Scholar
  15. [15]
    Zhu S, Fahrenholtz WG, Hilmas GE, Zhang SC. Pressureless sintering of carbon-coated zirconium diboride powders. Mater Sci Eng, A. 2007;459(1):167.CrossRefGoogle Scholar
  16. [16]
    He R, Zhang R, Pei Y, Fang D. Two-step hot pressing of bimodal micron/nano-ZrB2 ceramic with improved mechanical properties and thermal shock resistance. Int J Refract Metals Hard Mater. 2014;46(1):65.CrossRefGoogle Scholar
  17. [17]
    Brochu M, Gauntt BD, Boyer L, Loehman RE. Pressureless reactive sintering of ZrB2 ceramic. J Eur Ceram Soc. 2009;29(8):1493.CrossRefGoogle Scholar
  18. [18]
    Asl MS, Kakroudi MG, Nayebi B, Nasiri H. Taguchi analysis on the effect of hot pressing parameters on density and hardness of zirconium diboride. Int J Refract Metals Hard Mater. 2015;50:313.CrossRefGoogle Scholar
  19. [19]
    Wang H, Chen D, Wang CA, Zhang R, Fang D. Preparation and characterization of high-toughness ZrB2/Mo composites by hot-pressing process. Int J Refract Metals Hard Mater. 2009;27(6):1024.CrossRefGoogle Scholar
  20. [20]
    Choi SK, Ui SW, Choi IS, Choi SC. Densification behavior of ZrB2 with Co–WC as additives. J Ceram Soc Jpn. 2014;122(3):198.CrossRefGoogle Scholar
  21. [21]
    Chamberlain AL, Fahrenholtz WG, Hilmas GE. Pressureless sintering of zirconium diboride. J Am Ceram Soc. 2006;89(2):450.CrossRefGoogle Scholar
  22. [22]
    Wang Z, Zhang H, Gong S, Yao J, Ma SZ. Study on the IFBA pellets coating process. Nucl Sci Eng. 2015;35(4):633.Google Scholar
  23. [23]
    Li R, Song S, Wang Y, Zhen Q. Preparation and thermodynamics mechanism of nanocrystalline ZrC powders. Chin J Rare Metals. 2015;39(7):605.Google Scholar
  24. [24]
    Maeda H, Yoshikawa T, Kusakabe K, Morooka S. Synthesis of ultrafine NbB2, powder by rapid carbothermal reduction in a vertical tubular reactor. Cheminform. 1994;215(1–2):127.Google Scholar
  25. [25]
    Khanra AK, Pathak LC, Godkhindi MM. Carbothermal synthesis of zirconium diboride (ZrB2) whiskers. Br Ceram Trans. 2007;106(3):155.Google Scholar
  26. [26]
    Guo W, Zhang G. Reaction processes and characterization of ZrB2 powder prepared by boro/carbothermal reduction of ZrO2 in vacuum. J Am Ceram Soc. 2009;92(1):264.CrossRefGoogle Scholar
  27. [27]
    Yang BY, Li JP, Zhao B, Hu YZ, Wang TY, Sun DF, Li RX, Yin S, Feng ZH, Tang Q, Sato T. Synthesis of hexagonal-prism-like ZrB2 by a sol–gel route. Powder Technol. 2014;256(1):522.CrossRefGoogle Scholar
  28. [28]
    Hartman P, Perdok WG. On the relations between structure and morphology of crystals. I. Acta Crystallogr. 1955;8(9):521.CrossRefGoogle Scholar
  29. [29]
    Fan Z, Guo Z, Cantor B. The kinetics and mechanisms of interfacial reaction in sigma fibre-reinforced Ti MMCs. Compos A Appl Sci Manuf. 1997;28(2):131.CrossRefGoogle Scholar
  30. [30]
    Liu GY. Monte carlo simulation for zirconium diboride ceramics during sintering initial stage. Harbin: Harbin Institute of Technology; 2008; 28.Google Scholar
  31. [31]
    Zhao B, Yang BY, Wang TY, Sun DF, Hu YZ, Li RX, Yin S, Li JP, Feng ZH, Duan HP, Tang Q, Sato T. Nanocarbon-dependent synthesis of one-dimensional bead-chain-like β-SiC. Powder Technol. 2013;246:487.CrossRefGoogle Scholar
  32. [32]
    Zhang GJ, Zou J, Ni DW, Liu HT, Kan YM. Boride ceramics: densification, microstructure, tailoring and properties improvement. J Inorg Mater. 2012;27(3):225.CrossRefGoogle Scholar
  33. [33]
    Sciti D, Silvestroni L, Guicciardi S, Monteverde F. Reactive processes for Diboride-based ultra-high temperature ceramics. In: Fahrenholtz WG, Wuchina EJ, Lee WE, Zhou Y, editors. Ultra-High Temperature Ceramics: Materials for Extreme Environments. London: Wiley; 2014; 92.Google Scholar
  34. [34]
    Sha JJ, Li J, Lv ZZ, Wang SH, Zhang ZF, Zu YF, Flauder S, Krenkel W. ZrB2-based composites toughened by as-received and heat-treated short carbon fibers. J Eur Ceram Soc. 2017;37(2):549.CrossRefGoogle Scholar
  35. [35]
    Nisar A, Balani K, Sreenivas N, Ariharan S, Venkateswaran T. Effect of carbon nanotube on processing, microstructural, mechanical and ablation behavior of ZrB2–20SiC based ultra-high temperature ceramic composites. Carbon. 2017;111:269.CrossRefGoogle Scholar
  36. [36]
    Nisar A, Balani K, Ariharan S. Synergistic reinforcement of carbon nanotubes and silicon carbide for toughening tantalum carbide based ultrahigh temperature ceramic. J Mater Res. 2016;31(6):682.CrossRefGoogle Scholar
  37. [37]
    Asl MS, Zamharir MJ, Ahmadi Z, Parvizi S. Effects of nano-graphite content on the characteristics of spark plasma sintered ZiB2–SiC composites. Mater Sci Eng, A. 2018;716:99.CrossRefGoogle Scholar
  38. [38]
    Asl MS, Nayebi B, Ahmadi Z, Zamharir MJ, Shokouhimehr M. Effects of carbon additives on the properties of ZrB2-based composites: a review. Ceram Int. 2018. Scholar
  39. [39]
    Parvizi S, Ahmadi Z, Zamharir MJ, Asl MS. Synergistic effects of graphite nano-flakes and submicron SiC particles on the characteristics of spark plasma sintered ZrB2 nanocomposites. Int J Refract Metals Hard Mater. 2018;25:89. Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Metallurgy and Materials for Rare MetalsGeneral Research Institute for Nonferrous MetalsBeijingChina
  2. 2.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations