Rare Metals

pp 1–7 | Cite as

Thermal stability of Si-doped V2O5/WO3–TiO2 for selective catalytic reduction of NOx by NH3

  • Xun-Zhe Shao
  • Hong-You Wang
  • Meng-Long Yuan
  • Jie Yang
  • Wang-Cheng Zhan
  • Li WangEmail author
  • Yun Guo
  • Guan-Zhong Lu


The selective catalytic reduction of NOx with NH3 (NH3-SCR) is a very effective technology to control the emission of NOx, and the thermal stability of NH3-SCR catalyst is very important for removal of NOx from diesel engines. In this work, V2O5/WO3–TiO2 (VWT) and SiO2-doped V2O5/WO3–TiO2 (VWTSi10) catalysts were prepared by impregnation method and characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), Raman, temperature programmed reduction by hydrogen (H2-TPR), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption by ammonia (NH3-TPD). The doping of SiO2 promotes the thermal stability of V2O5/WO3–TiO2 for NH3-SCR significantly. After calcination at 650 °C for 50 h, the operation window of 10% SiO2-doped V2O5/WO3–TiO2 is 220–480 °C, while the maximum NOx conversion on V2O5/WO3–TiO2 is about 77%. The presence of SiO2 obviously blocks the transformation of TiO2 from anatase to rutile and stabilizes the dispersion of VOx and WO3 on the surface. It is available for the existence of V4+ and the amount of surface acid sites increases, which inhabits the NH3 oxidation at the high temperature range and promotes NH3-SCR activity.


V2O5/WO3–TiO2 SiO2 NH3-SCR Thermal stability 



This project was financially supported by the National Key Research and Development Program of China (No. 2016YFC0204300), the National High Technology Research and Development Program of China (No. 2015AA034603), and the National Natural Science Foundation of China (Nos. 21333003 and 21571061), the “Shu Guang” Project of the Shanghai Municipal Education Commission (No. 12SG29) and the Commission of Science and Technology of Shanghai Municipality (No. 15DZ1205305).


  1. [1]
    Baldi M, Finocchio E, Milella F, Busca G. Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4. Appl Catal B Environ. 1998;16(1):41.CrossRefGoogle Scholar
  2. [2]
    Li J, Chang H, Ma L, Hao J, Yang RT. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts. A review. Catal Today. 2011;175(1):147.CrossRefGoogle Scholar
  3. [3]
    Roy S, Hegde MS, Madras G. Catalysis for NOx abatement. Appl Energy. 2009;86(11):2283.CrossRefGoogle Scholar
  4. [4]
    Wang HY, Shao XZ, Wang L, Zhan WC, Guo Y, Lu GZ. Catalytic activity of SiO2 doped V2O5/WO3–TiO2 for selective catalytic reduction of NOx by NH3. Chin J Rare Met. 2018;42(1):53.Google Scholar
  5. [5]
    Casanova M, Schermanz K, Llorca J, Trovarelli A. Improved high temperature stability of NH3-SCR catalysts based on rare earth vanadates supported on TiO2–WO3–SiO2. Catal Today. 2012;184(1):227.CrossRefGoogle Scholar
  6. [6]
    Heon PH, Soon HJ, Jun YL, Sung HH. Study on SCR De NOx mechanism through in situ electrical conductivity measurements on V2O5–WO3/TiO2 catalysts. Rare Met. 2006;25(6):77.CrossRefGoogle Scholar
  7. [7]
    Vargas MAL, Casanova M, Trovarelli A, Busca G. An IR study of thermally stable V2O5–WO3–TiO2 SCR catalysts modified with silica and rare-earths (Ce, Tb, Er). Appl Catal B Environ. 2007;75(3–4):303.CrossRefGoogle Scholar
  8. [8]
    Madia G, Elsener M, Koebel M, Raimondi F, Wokaun A. Thermal stability of vanadia–tungsta–titania catalysts in the SCR process. Appl Catal B Environ. 2002;39(2):181.CrossRefGoogle Scholar
  9. [9]
    Nova I, Acqua LD, Lietti L, Giamello E, Forzatti P. Study of thermal deactivation of a de-NOx commercial V2O5–WO3/TiO2 catalyst. Appl Catal B Environ. 2001;35(1):31.CrossRefGoogle Scholar
  10. [10]
    Reddy BM, Ganesh I, Chowdhury B. Design of stable and reactive vanadium oxide catalysts supported on binary oxides. Catal Today. 1999;49(1–3):115.CrossRefGoogle Scholar
  11. [11]
    Shi AJ, Wang XQ, Yu T, Shen MQ. The effect of zirconia additive on the activity and structure stability of V2O5/WO3–TiO2 ammonia SCR catalysts. Appl Catal B Environ. 2011;106(3):359.CrossRefGoogle Scholar
  12. [12]
    Reddy BM, Mehdi S, Reddy EP. Dispersion and thermal stability of vanadium oxide catalysts supported on titania-alumina binary oxide. Catal Lett. 1996;36(3):187.CrossRefGoogle Scholar
  13. [13]
    Kobayashi M, Kuma R, Masaki S, Sugishima N. TiO2–SiO2 and V2O5/TiO2–SiO2 catalyst: physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3. Appl Catal B Environ. 2005;60(3–4):173.CrossRefGoogle Scholar
  14. [14]
    Pan Y, Zhao W, Zhong Q, Cai W, Li H. Promotional effect of Si-doped V2O5/TiO2 for selective catalytic reduction of NOx by NH3. J Environ Sci. 2013;25(8):1703.CrossRefGoogle Scholar
  15. [15]
    Zhao W, Tang Y, Wan Y, Li L, Yao S, Li X, Gu J, Li Y, Shi J. Promotion effects of SiO2 or/and Al2O3 doped CeO2/TiO2 catalysts for selective catalytic reduction of NO by NH3. J Hazard Mater. 2014;278(1):350.CrossRefGoogle Scholar
  16. [16]
    Chapman DM, Fu G, Augustine S, Watson M, Crouse J, Zavalij L, Banks DP. New titania materials with improved stability and activity for vanadia-based selective catalytic reduction of NOx. SAE Int J Fuels Lubr. 2010;3(1):643.CrossRefGoogle Scholar
  17. [17]
    Cheng K, Liu J, Zhang T, Li J, Zhao Z, Wei Y, Jiang G, Duan A. Effect of Ce doping of TiO2 support on NH3-SCR activity over V2O5–WO3/CeO2–TiO2 catalyst. J Environ Sci. 2014;26(10):2106.CrossRefGoogle Scholar
  18. [18]
    Ross-Medgaarden EI, Wachs IE, Knowles WV, Burrows A, Kiely CJ, Wong MS. Tuning the electronic and molecular structures of catalytic active sites with titania nanoligands. J Am Chem Soc. 2009;131(2):680.CrossRefGoogle Scholar
  19. [19]
    Wang J, Yan Z, Liu L, Chen Y, Zhang Z, Wang X. In situ DRIFTS investigation on the SCR of NO with NH3 over V2O5 catalyst supported by activated semi-coke. Appl Surf Sci. 2014;313(13):660.CrossRefGoogle Scholar
  20. [20]
    Putluru SSR, Schill L, Godiksen A, Poreddy R, Mossin S, Jensen AD, Fehrmann R. Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B Environ. 2016;183(1):282.CrossRefGoogle Scholar
  21. [21]
    Wachs IE, Roberts CA. Monitoring surface metal oxide catalytic active sites with Raman spectroscopy. Chem Soc Rev. 2010;39(12):5002.CrossRefGoogle Scholar
  22. [22]
    Liu X, Wu X, Xu T, Weng D, Si Z, Ran R. Effects of silica additive on the NH3-SCR activity and thermal stability of a V2O5/WO3–TiO2 catalyst. Chin J Catal. 2016;37(8):1340.CrossRefGoogle Scholar
  23. [23]
    Yu W, Wu X, Si Z, Weng D. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5–WO3/TiO2 catalyst. Appl Surf Sci. 2013;283(20):209.CrossRefGoogle Scholar
  24. [24]
    Wu X, Yu W, Si Z, Weng D. Chemical deactivation of V2O5–WO3/TiO2 SCR catalyst by combined effect of potassium and chloride. Front Environ Sci Eng. 2013;7(3):420.CrossRefGoogle Scholar
  25. [25]
    Chen L, Li J, Ge M. The poisoning effect of alkali metals doping over nano V2O5–WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3. Chem Eng J. 2011;170(2–3):531.CrossRefGoogle Scholar
  26. [26]
    Wang C, Yang S, Chang H, Peng Y, Li J. Dispersion of tungsten oxide on SCR performance of V2O5WO3/TiO2: acidity, surface species and catalytic activity. Chem Eng J. 2013;225(6):520.CrossRefGoogle Scholar
  27. [27]
    Guo XY, Bartholomew C, Hecker W, Baxter LL. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems. Appl Catal B Environ. 2009;92(1–2):30.CrossRefGoogle Scholar
  28. [28]
    Reddy BM, Ganesh I, Reddy EP. Study of dispersion and thermal stability of V2O5/TiO2–SiO2 catalysts by XPS and other techniques. J Phys Chem B. 1997;101(10):1769.CrossRefGoogle Scholar
  29. [29]
    Lee JY, Hong SH, Cho SP, Hong SC. The study of deNO(x) catalyst in low temperature using nano-sized supports. Curr Appl Phys. 2006;6(6):996.CrossRefGoogle Scholar
  30. [30]
    Zhang QM, Song CL, Lv G, Bin F, Pang HT, Song J. Effect of metal oxide partial substitution of V2O5 in V2O5–WO3/TiO2 on selective catalytic reduction of NO with NH3. J Ind Eng Chem. 2015;24(1):79.CrossRefGoogle Scholar
  31. [31]
    He YY, Ford ME, Zhu MH, Liu QC, Tumuluri U, Wu ZL, Wachs IE. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5–WO3/TiO2 catalysts. Appl Catal B Environ. 2016;193(1):141.CrossRefGoogle Scholar
  32. [32]
    Boningari T, Koirala R, Smirniotis PG. β-Bi2O3 and Er3+ doped β-Bi2O3 single crystalline nanosheets with exposed reactive {001} facets and enhanced photocatalytic performance. Appl Catal B Environ. 2013;140–141(8):289.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory for Research Institute of Industrial Catalysis, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations